Advertisement

Data mining study of hormone biosynthesis gene expression reveals new aspects of somatic embryogenesis regulation

  • R. T. Saptari
  • H. SusilaEmail author
Developmental Biology
  • 134 Downloads

Abstract

Although the application of exogenous hormones and the status of endogenous hormones play a crucial factor in somatic embryogenesis (SE), our understanding of the status of endogenous hormones and the molecular framework for hormone biosynthesis during SE are still elusive. With a data mining approach, we analyzed public RNA-seq data of SE from two model plants, Arabidopsis thaliana and Oryza sativa var. Japonica, which showed that several plant hormone biosynthesis genes had distinct patterns during SE. The expressions of auxin, cytokinin, gibberellin, and ethylene biosynthesis genes were induced during SE in A. thaliana, while only jasmonic acid showed an expression increase during somatic embryogenesis in both plants. Furthermore, by analyzing public RNA sequencing and DNA affinity purification sequencing (DAP-seq), we revealed some possibilities of the role of ethylene during SE through the activity of EIN3, by increasing the expression level of major transcription factors of somatic embryo development such as AGL15, BBM, and FUS3.

Keywords

Data mining Phytohormones Somatic embryogenesis Transcriptomics 

Notes

Acknowledgements

We are grateful to Z. Nasim (Korea University, South Korea) for his technical advices on bioinformatics analysis and to Dr. R. A. Putranto (Indonesian Research Institute for Biotechnology and Bioindustry, Indonesia) for the discussion during manuscript preparation.

Funding information

This paper is also made possible through the support of Indonesian Endowment Fund for Education (LPDP) to R. T. Saptari.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11627_2018_9947_MOESM1_ESM.docx (233 kb)
ESM 1 (DOCX 232 kb)

References

  1. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D, Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E, Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J (2016) The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res 44(W1):W3–W10.  https://doi.org/10.1093/nar/gkw343 Google Scholar
  2. Arteca RN, Arteca JM (2008) Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot 59(11):3019–3026.  https://doi.org/10.1093/jxb/ern159 Google Scholar
  3. Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6(4):1247–1260.  https://doi.org/10.1093/mp/sss154 Google Scholar
  4. Bassaganya-Riera J, Nolan KE, Song Y, Liao S, Saeed NA, Zhang X, Rose RJ (2014) An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula. PLoS One 9(6):e99908.  https://doi.org/10.1371/journal.pone.0099908 Google Scholar
  5. Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SS, Schmitz RJ, Urich MA, Kuo D, Nery JR, Qiao H, Yang A, Jamali A, Chen H, Ideker T, Ren B, Bar-Joseph Z, Hughes TR, Ecker JR (2013) Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis. Elife 2:e00675.  https://doi.org/10.7554/eLife.00675 Google Scholar
  6. Etienne H, Bertrand B, Dechamp E, Maurel P, Georget F, Guyot R, Breitler J (2016a) Are genetic and epigenetic instabilities of plant embryogenic cells a fatality? The experience of coffee somatic embryogenesis. Hum Genet Embryol 6(136).  https://doi.org/10.4172/2161-0436.1000136
  7. Etienne H, Guyot R, Beulé T, Breitler J-C, Jaligot E (2016b) Plant fidelity in somatic embryogenesis-regenerated plants. In: L-V V, O-A N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 121–150Google Scholar
  8. Freese NH, Norris DC, Loraine AE (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32(14):2089–2095.  https://doi.org/10.1093/bioinformatics/btw069 Google Scholar
  9. Gaj MD, Trojanowska A, Ujczak A, Mędrek M, Kozioł A, Garbaciak B (2006) Hormone-response mutants of Arabidopsis thaliana (L.) Heynh. impaired in somatic embryogenesis. Plant Growth Regul 49(2–3):183–197.  https://doi.org/10.1007/s10725-006-9104-8 Google Scholar
  10. Georget F, Courtel P, Garcia EM, Hidalgo M, Alpizar E, Breitler J-C, Bertrand B, Etienne H (2017) Somatic embryogenesis-derived coffee plantlets can be efficiently propagated by horticultural rooted mini-cuttings: a boost for somatic embryogenesis. Sci Hortic 216:177–185.  https://doi.org/10.1016/j.scienta.2016.12.017 Google Scholar
  11. Goff L, Trapnell C, Kelley D (2013) cummeRbund: Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data. R package version 2.22.0Google Scholar
  12. Grzyb M, Kalandyk A, Waligórski P, Mikuła A (2017) The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tissue Organ Cult 129(3):387–397.  https://doi.org/10.1007/s11240-017-1185-8 Google Scholar
  13. Grzyb M, Kalandyk A, Mikuła A (2018) Effect of TIBA, fluridone and salicylic acid on somatic embryogenesis and endogenous hormone and sugar contents in the tree fern Cyathea delgadii Sternb. Acta Physiol Plant 40(1).  https://doi.org/10.1007/s11738-017-2577-4
  14. Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muiño JM, Angenent GC, Boutilier K (2017) The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol 175:848–857.  https://doi.org/10.1104/pp.17.00232 Google Scholar
  15. Igielski R, Kępczyńska E (2017) Gene expression and metabolite profiling of gibberellin biosynthesis during induction of somatic embryogenesis in Medicago truncatula Gaertn. PLoS One 12(7):e0182055.  https://doi.org/10.1371/journal.pone.0182055 Google Scholar
  16. Indoliya Y, Tiwari P, Chauhan AS, Goel R, Shri M, Bag SK, Chakrabarty D (2016) Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies. Sci Rep 6:23050.  https://doi.org/10.1038/srep23050 Google Scholar
  17. Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475.  https://doi.org/10.3389/fpls.2017.00475 Google Scholar
  18. Jayanthi M, Susanthi B, Murali Mohan N, Mandal PK (2015) In vitro somatic embryogenesis and plantlet regeneration from immature male inflorescence of adult dura and tenera palms of Elaeis guineensis (Jacq.). SpringerPlus 4:256.  https://doi.org/10.1186/s40064-015-1025-4 Google Scholar
  19. Jones B, Gunnerås SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22(9):2956–2969.  https://doi.org/10.1105/tpc.110.074856 Google Scholar
  20. Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21(10):3152–3169.  https://doi.org/10.1105/tpc.109.068676 Google Scholar
  21. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923 Google Scholar
  22. Lardet L, Dessailly F, Carron MP, Montoro P, Monteuuis O (2008) Influences of aging and cloning methods on the capacity for somatic embryogenesis of a mature Hevea brasiliensis genotype. Tree Physiol 29(2):291–298.  https://doi.org/10.1093/treephys/tpn027 Google Scholar
  23. Lema-Rumińska J, Goncerzewicz K, Gabriel M (2013) Influence of abscisic acid and sucrose on somatic embryogenesis in cactus Copiapoa tenuissima Ritt. forma mostruosa. Sci World J 2013:1–7.  https://doi.org/10.1155/2013/513985 Google Scholar
  24. Liu X, Hou X (2018) Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci 9:251.  https://doi.org/10.3389/fpls.2018.00251 Google Scholar
  25. Luo J-P, Jiang S-T, Pan L-J (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall.: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci 161(1):125–132.  https://doi.org/10.1016/s0168-9452(01)00401-0 Google Scholar
  26. Malabadi RB, Teixeira da Silva JA, Nataraja K (2008) Salicylic acid induces somatic embryogenesis from mature trees of Pinus roxburghii (Chir pine) using TCL technology. Tree For Sci Biotech 2(1):34–39Google Scholar
  27. Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146(4):1622–1636.  https://doi.org/10.1104/pp.107.110379 Google Scholar
  28. Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, Antin P (2016) The iPlant Collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLoS Biol 14(1):e1002342.  https://doi.org/10.1371/journal.pbio.1002342 Google Scholar
  29. Mira MM, Wally OSD, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C (2016) Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis class 2 phytoglobin. J Exp Bot 67(8):2231–2246.  https://doi.org/10.1093/jxb/erw022 Google Scholar
  30. Nhut DT, Le BV, Thanh Van KT (2000) Somatic embryogenesis and direct shoot regeneration of rice (Oryza sativa L.) using thin cell layer culture of apical meristematic tissue. J Plant Physiol 157(5):559–565.  https://doi.org/10.1016/s0176-1617(00)80112-1 Google Scholar
  31. Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101(21):8039–8044.  https://doi.org/10.1073/pnas.0402504101 Google Scholar
  32. Nowak K, Gaj MD (2016) Transcription factors in the regulation of somatic embryogenesis. In: L-V V, O-A N (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Cham, pp 53–79Google Scholar
  33. Nowak K, Wójcikowska B, Gaj MD (2014) ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway. Planta 241(4):967–985.  https://doi.org/10.1007/s00425-014-2225-9 Google Scholar
  34. O’Malley RC, Huang S-shan C, Song L, Lewsey Mathew G, Bartlett A, Nery Joseph R, Galli M, Gallavotti A, Ecker Joseph R (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165(5):1280–1292.  https://doi.org/10.1016/j.cell.2016.08.063 Google Scholar
  35. Omelyanchuk NA, Wiebe DS, Novikova DD, Levitsky VG, Klimova N, Gorelova V, Weinholdt C, Vasiliev GV, Zemlyanskaya EV, Kolchanov NA, Kochetov AV, Grosse I, Mironova VV (2017) Auxin regulates functional gene groups in a fold-change-specific manner in Arabidopsis thaliana roots. Sci Rep 7(1):2489.  https://doi.org/10.1038/s41598-017-02476-8 Google Scholar
  36. Piyatrakul P, Putranto R-A, Martin F, Rio M, Dessailly F, Leclercq J, Dufayard J-F, Lardet L, Montoro P (2012) Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis. BMC Plant Biol 12(1):244.  https://doi.org/10.1186/1471-2229-12-244 Google Scholar
  37. Quiroz-Figueroa F, Mendez Z,M, Larque-Saavedra A, Loyola-Vargas V (2001) Picomolar concentrations of salicylates induce cellular growth and enhance somatic embryogenesis in Coffea arabica tissue culture. Plant Cell Rep 20(8):679–684.  https://doi.org/10.1007/s002990100386 Google Scholar
  38. Raghavan V (2004) Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: cell expansion, cell cycling, and morphogenesis during continuous exposure of embryos to 2,4-D. Am J Bot 91(11):1743–1756.  https://doi.org/10.3732/ajb.91.11.1743 Google Scholar
  39. Shi X, Dai X, Liu G, Bao M (2009) Enhancement of somatic embryogenesis in camphor tree (Cinnamomum camphora L.): osmotic stress and other factors affecting somatic embryo formation on hormone-free medium. Trees 23(5):1033–1042.  https://doi.org/10.1007/s00468-009-0345-9 Google Scholar
  40. Su YH, Zhao XY, Liu YB, Zhang CL, O’Neill SD, Zhang XS (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59(3):448–460.  https://doi.org/10.1111/j.1365-313X.2009.03880.x Google Scholar
  41. Su YH, Liu YB, Bai B, Zhang XS (2015) Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci 5:792.  https://doi.org/10.3389/fpls.2014.00792 Google Scholar
  42. Sun T (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6:e0103.  https://doi.org/10.1199/tab.0103 Google Scholar
  43. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515.  https://doi.org/10.1038/nbt.1621 Google Scholar
  44. Verma D, Joshi R, Shukla A, Kumar P (2011) Protocol for in vitro somatic embryogenesis and regeneration of rice (Oryza sativa L.). Indian J Exp Biol 49(12):958–963Google Scholar
  45. Verma SK, Das AK, Cingoz GS, Uslu E, Gurel E (2016) Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol Rep (Amst) 10:66–74.  https://doi.org/10.1016/j.btre.2016.03.006 Google Scholar
  46. Vondráková Z, Eliášová K, Fischerová L, Vágner M (2011) The role of auxins in somatic embryogenesis of Abies alba. Cent Eur J Biol 6(4):587–596.  https://doi.org/10.2478/s11535-011-0035-7 Google Scholar
  47. Wickramasuriya AM, Dunwell JM (2015) Global scale transcriptome analysis of Arabidopsis embryogenesis in vitro. BMC Genomics 16:301.  https://doi.org/10.1186/s12864-015-1504-6 Google Scholar
  48. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(8):e718.  https://doi.org/10.1371/journal.pone.0000718 Google Scholar
  49. Wójcik AM, Gaj MD (2016) miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Planta 244(1):231–243.  https://doi.org/10.1007/s00425-016-2505-7 Google Scholar
  50. Wójcikowska B, Jaskóła K, Gąsiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238(3):425–440.  https://doi.org/10.1007/s00425-013-1892-2 Google Scholar
  51. Wu Y, Dor E, Hershenhorn J (2016) Strigolactones affect tomato hormone profile and somatic embryogenesis. Planta 245(3):583–594.  https://doi.org/10.1007/s00425-016-2625-0 Google Scholar
  52. Yu YB, Yang SF (1979) Auxin-induced ethylene production and its inhibition by aminoethyoxyvinylglycine and cobalt ion. Plant Physiol 64(6):1074–1077.  https://doi.org/10.1104/pp.64.6.1074 Google Scholar
  53. Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21(9):2563–2577.  https://doi.org/10.1105/tpc.109.068890 Google Scholar
  54. Zheng Q, Zheng Y, Perry SE (2013) AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol 161(4):2113–2127.  https://doi.org/10.1104/pp.113.216275 Google Scholar
  55. Zheng Q, Zheng Y, Ji H, Burnie W, Perry SE (2016) Gene regulation by the AGL15 transcription factor reveals hormone interactions in somatic embryogenesis. Plant Physiol 172(4):2374–2387.  https://doi.org/10.1104/pp.16.00564 Google Scholar
  56. Zur I, Dubas E, Krzewska M, Janowiak F (2015) Current insights into hormonal regulation of microspore embryogenesis. Front Plant Sci 6:424.  https://doi.org/10.3389/fpls.2015.00424 Google Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  1. 1.Indonesian Research Institute for Biotechnology and BioindustryBogorIndonesia
  2. 2.School of Life Science and TechnologyBandung Institute of TechnologyBandungIndonesia
  3. 3.Departement of Life SciencesKorea UniversitySeoulSouth Korea

Personalised recommendations