Advertisement

Cytokine response after stimulation of culture cells by zinc and probiotic strain

  • Miroslava ŠefcováEmail author
  • Martin Levkut
  • Katarína Bobíková
  • Viera Karaffová
  • Viera Revajová
  • Ivana Cingeľová Maruščáková
  • Mária Levkutová
  • Zuzana Ševčíková
  • Róbert Herich
  • Mikuláš Levkut
Article
  • 52 Downloads

Abstract

Intestinal porcine epithelial cells were used for an in vitro analysis of mRNA expression levels of inflammatory cytokines (IL-8, IL-18) and transcriptional factors (MyD88 and NF-κβ). Cells were exposed to inorganic and organic zinc sources (in two different concentrations—50 μmol/L and 100 μmol/L) alone or combined with Lactobacillus reuteri B6/1, which was also applied individually. The total exposure time was 4 h. Quantitative reverse transcriptase PCR was used to determine expression levels of the aforementioned parameters. In general, upregulation was observed; however, a decrease of some mRNA’s abundance was also determined. Differences in expression were analysed statistically using ANOVA and Tukey analyses. High relative expression was shown for IL-8, IL-18 and MyD88 in groups treated with 100 μmol/L of inorganic sources of zinc (ZnSO4) (p < 0.05), while groups treated with the organic form did not exhibit significant changes in expression. Also, 50 μmol/L of either zinc source did not significantly modify the transcriptional profile of the cytokines and transcription factors, showing that even inorganic sources, at lower concentrations, do not elicit a significant inflammatory reaction. In summary, supplementation of organic zinc source (Gly-Zn chelate) ensures that IL-8, IL-18, MyD88 and NF-κβ expression levels are not positively regulated. In contrast, inorganic sources of zinc (ZnSO4) could induce an inflammatory reaction. However, this response could be dampened if L. reuteri B6/1 is administered, showing the helpful aspect of using probiotics to modulate an inflammatory response. Conclusively, the use Gly-Zn chelate appears as an optimal alternative for Zn administration that does not compromise normal intestinal homeostasis.

Keywords

Zinc glycine chelate Zinc sulphate Probiotic bacteria Cytokine Transcription factors IPEC-1 

Notes

Acknowledgements

We are very grateful to Marco Larrea-Álvarez, PhD, and to César Larrea-Álvarez for the appropriate and constructive suggestions that help to improve the manuscript. This work was supported by the Grant Agency for Science of the Slovak Republik VEGA (1/0112/18, 1/0355/19); Slovak Research and Developmental Agency (APVV-15-0165).

Supplementary material

11626_2019_401_MOESM1_ESM.pdf (196 kb)
ESM 1 (PDF 195 kb)
11626_2019_401_MOESM2_ESM.xlsx (10 kb)
ESM 2 (XLSX 9 kb)

References

  1. Bao YM, Choct M, Iji PA, Bruerton K (2010) The digestibility of organic trace minerals along the small intestine in broiler chickens. Asian Australas J Anim Sci 23:90–97CrossRefGoogle Scholar
  2. Bonaventura P, Benedetti G, Albarède F, Miossec P (2015) Zinc and its role in immunity and inflammation. Autoimmun Rev 14:277–285CrossRefGoogle Scholar
  3. Brown SL, Riehl TE, Walker MR, Geske MJ, Doherty JM, Stenson WF, Stappenbeck TS (2007) MyD88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J Clin Invest 117:258–269CrossRefGoogle Scholar
  4. Chia SL, Tay CY, Setyawati MI, Leong DT (2014) Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles. Small 11:702–712CrossRefGoogle Scholar
  5. Chon H, Choi B, Jeong G, Lee E, Lee S (2010) Suppression of proinflammatory cytokine production by specific metabolites of Lactobacillus plantarum 10hk2 via inhibiting NF-kappaB and p38 MAPK expressions. Comp Immunol Microbiol Infect Dis 33:e41–e49CrossRefGoogle Scholar
  6. Chytilová M, Nemcová R, Gancarčíková S, Mudroňová D, Tkáčiková L (2014) Flax-seed oil and Lactobacillus plantarum supplementation modulate TLR and NF-κβ gene expression in enterotoxigenic Escherichia coli challenged gnotobiotic pigs. Acta Vet Hung 62:463–472CrossRefGoogle Scholar
  7. De Boever S, Vangestel C, De Vacker P, Croubels S, Sys SU (2008) Identification and validation of housekeeping genes as internal control for gene expression in an intravenous LPS inflammation model in chickens. Vet Immunol Immunopathol 122:312–317CrossRefGoogle Scholar
  8. Deguine J, Barton GM (2014) MyD88: a central player in innate immune signaling. F1000Prime rep 6:97CrossRefGoogle Scholar
  9. Elliott CL, Allport VC, Loudon JA, Wu GD, Bennett PR (2001) Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 7:787–790CrossRefGoogle Scholar
  10. Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374–379CrossRefGoogle Scholar
  11. Huang D, Zhuo Z, Fang S, Yue M, Feng J (2016) Different zinc sources have diverse impacts on gene expression of zinc absorption related transporters in intestinal porcine epithelial cells. Biol Trace Elem Res 176:325–332CrossRefGoogle Scholar
  12. Husáková E, Bobíková K, Stašová D (2015) Total IgA in spleen, bursa and intestine of chickens pretreated with E. faecium AL41 and challenged with Salmonella Enteritidis PT4. Food Agric Immunol 26:366–370CrossRefGoogle Scholar
  13. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T (2017) Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κβ signaling. Inflammopharmacology 25:11–24CrossRefGoogle Scholar
  14. Jiang Y, Lu X, Man C, Han L, Shan Y, Qu X, Liu Y, Yang S, Xue Y, Zhanga Y (2012) Lactobacillus acidophilus induces cytokine and chemokine production via NF-kappaB and p38 mitogen-activated protein kinase signaling pathways in intestinal epithelial cells. Clin Vaccine Immunol 19:603–608CrossRefGoogle Scholar
  15. Karaffová V, Husáková E, Bobíková K, Herich R, Revajová V, Stašová D, Kavuľová A, Levkutová M, Levkut M Jr, Lauková A, Ševčíková Z, Levkut M Sr (2017) TLR4 and TLR21 expression, MIF, IFN-β, MD-2, CD14 activation, and sIgA production in chickens administered with EFAL41 strain challenged with Campylobacter jejuni. Folia Microbiol 62:89–97CrossRefGoogle Scholar
  16. Kumar A, Collier-Hyams LS, Kwon YM, Hanson JM, Neish AS (2009) The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation. J Immunol 182:538–546CrossRefGoogle Scholar
  17. Lan JG (2005) Different cytokine responses of primary colonic epithelial cells to commensal bacteria. World J Gastroenterol 11:3375–3384CrossRefGoogle Scholar
  18. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κβ signaling in inflammation. Signal Transduct Target Ther 2:e17023CrossRefGoogle Scholar
  19. Lodemann U, Einspanier R, Scharfen F, Martens H, Bondzio A (2013) Effects of zinc on epithelial barrier properties and viability in a human and a porcine intestinal cell culture model. Toxicol in Vitro 27:834–843CrossRefGoogle Scholar
  20. Lügering N, Kucharzik T, Gockel H, Sorg C, Stoll R, Domschke W (1998) Human intestinal epithelial cells down-regulate IL-8 expression in human intestinal microvascular endothelial cells; role of transforming growth factor-beta 1 (TGF-beta1). Clin Exp Immunol 114:377–384CrossRefGoogle Scholar
  21. Mariani V, Palermo S, Fiorentini S, Lanubile A, Giuffra E (2009) Gene expression study of two widely used pig intestinal epithelial cell lines: IPEC-J2 and IPI-2I. Vet Immunol Immunopathol 131:278–284CrossRefGoogle Scholar
  22. Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin GL, Warfield KL, Klaenhammer TR (2005) Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. Proc Natl Acad Sci 102:2880–2885CrossRefGoogle Scholar
  23. Morita H, He F, Fuse T, Ouwehand AC, Hashimoto H, Hosoda M, Mizumachi K, Kurisaki J (2002) Adhesion of lactic acid bacteria to caco-2 cells and their effect on cytokine secretion. Microbiol Immunol 46:293–297CrossRefGoogle Scholar
  24. Muñoz M, Eidenschenk C, Ota N, Wong K, Lohmann U, Kühl AA, Wang X, Manzanillo P, Li Y, Rutz S, Zheng Y, Diehl L, Kayagaki N, van Lookeren-Campagne M, Liesenfeld O, Heimesaat M, Ouyang W (2015) Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42:321–331CrossRefGoogle Scholar
  25. Neish AS, Gewirtz AT, Zeng H, Young AN, Hobert ME, Karmali V, Rao AS, Madara JL (2000) Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289:1560–1563CrossRefGoogle Scholar
  26. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW, Bailis W, Low JS, Harman CC, Graham M, Elinav E, Flavell RA (2015) Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163:1444–1456CrossRefGoogle Scholar
  27. Plaza-Diaz J, Gomez-Llorente C, Fontana L, Gil A (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20:15632–15649CrossRefGoogle Scholar
  28. Roselli M, Finamore A, Britti M, Bosi P, Oswald I, Mengheri E (2005) Alternatives to in-feed antibiotics in pigs: evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim Res 54:203–218CrossRefGoogle Scholar
  29. Sargeant HR, Miller HM, Shaw MA (2011) Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. Mol Immunol 48:2113–2121CrossRefGoogle Scholar
  30. Shao L, Serrano D, Mayer L (2001) The role of epithelial cells in immune regulation in the gut. Semin Immunol 13:163–176CrossRefGoogle Scholar
  31. Shimazu T, Villena J, Tohno M, Fujie H, Hosoya S, Shimosato T, Kitazawa H (2012) Immunobiotic Lactobacillus jensenii elicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of the toll-like receptor signaling pathway. Infect Immun 80:276–288CrossRefGoogle Scholar
  32. Siegmund B (2010) Interleukin-18 in intestinal inflammation: friend and foe? Immunity 32:300–302CrossRefGoogle Scholar
  33. Tien MT, Girardin SE, Regnault B, Le Bourhis L, Dillies MA, Coppée JY, Bourdet-Sicard R, Sansonetti PJ, Pédron T (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176:1228–1237CrossRefGoogle Scholar
  34. Vizoso Pinto MG, Rodriguez Gomez M, Seifert S, Watzl B, Holzapfel WH, Franz CM (2009) Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. Int J Food Microbiol 133:86–93CrossRefGoogle Scholar
  35. Volf J, Stepanova H, Matiasovic J, Kyrova K, Sisak F, Havlickova H, Leva L, Faldyna M, Rychlik I (2012) Salmonella enterica serovar typhimurium and Enteritidis infection of pigs and cytokine signalling in palatine tonsils. Vet Microbiol 156:127–135CrossRefGoogle Scholar
  36. Von Schillde MA, Hörmannsperger G, Weiher M, Alpert CA, Hahne H, Bäuerl C, Haller D (2012) Lactocepin secreted by Lactobacillus exerts anti-inflammatory effects by selectively degrading proinflammatory chemokines. Cell Host Microbe 11:387–396CrossRefGoogle Scholar
  37. Wu Y, Zhu C, Chen Z, Chen Z, Zhang W, Ma X, Jiang Z (2016) Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells. Vet Immunol Immunopathol 172:55–63CrossRefGoogle Scholar
  38. Yan M, Xu Q, Zhang P, Zhou X, Zhang Z, Chen W (2010) Correlation of NF-κB signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. BMC Cancer 10:437CrossRefGoogle Scholar
  39. Yang H, Xiong X, Li T, Yin Y (2016) Ethanolamine enhances the proliferation of intestinal epithelial cells via the mTOR signalling pathway and mitochondrial function. In vitro cell dev biol ˗. Animal 52:562–567Google Scholar
  40. Young L, Sung J, Stacey G, Masters JR (2010) Detection of mycoplasma in cell cultures. NatGoogle Scholar
  41. Yu Y, Lu L, Wang RL, Xi L, Luo XG, Liu B (2010) effects of source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poult Sci 89:2157–2165CrossRefGoogle Scholar
  42. Zeuthen LH, Fink LN, Metzdorff SB, Kristensen MB, Licht TR, Nellemann C, Frøkiaer H (2010) Lactobacillus acidophilus induces a slow but more sustained chemokine and cytokine response in naïve foetal enterocytes compared to commensal Escherichia coli. BMC Immunol 11:2CrossRefGoogle Scholar
  43. Zhao S, Li B, Chen G, Hu Q, Zhao L (2017) Preparation, characterization, and anti-inflammatory effect of the chelate of Flammulina velutipes polysaccharide with Zn. Food Agric Immunol 28:162–177CrossRefGoogle Scholar
  44. Zhu C, Lv H, Chen Z, Wang L, Wu X, Chen Z, Jiang Z (2017) Dietary zinc oxide modulates antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Biol Trace Elem Res 175:331–338CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  • Miroslava Šefcová
    • 1
    Email author
  • Martin Levkut
    • 1
  • Katarína Bobíková
    • 1
  • Viera Karaffová
    • 1
  • Viera Revajová
    • 1
  • Ivana Cingeľová Maruščáková
    • 2
  • Mária Levkutová
    • 3
  • Zuzana Ševčíková
    • 1
  • Róbert Herich
    • 1
  • Mikuláš Levkut
    • 1
    • 4
  1. 1.Department of Pathological Anatomy and Pathological PhysiologyUniversity of Veterinary Medicine and PharmacyKošiceSlovak Republic
  2. 2.Department of Microbiology and ImmunologyUniversity of Veterinary Medicine and PharmacyKošiceSlovak Republic
  3. 3.Department of Epizootiology and ParasitologyUniversity of Veterinary Medicine and PharmacyKošiceSlovak Republic
  4. 4.Institute of NeuroimmunologySlovak Academy of ScienceBratislavaSlovak Republic

Personalised recommendations