Testosterone promotes GPX5 expression of goat epididymal epithelial cells cultured in vitro

  • Zhaojin LuanEmail author
  • Xiaomei Fan
  • Huizi Song
  • Ruilan Li
  • Wenguang Zhang
  • Jiaxin ZhangEmail author


Androgens are involved in maintaining epididymal structure and function. In the present study, primary culture of goat EECs and effect of testosterone on expression of glutathione peroxidase-5 (GPX5) in goat epididymal epithelial cells (EECs) were investigated. The EECs isolated from 12-mo-old goat caput epididymis were cultured with testosterone in vitro, and expression of glutathione peroxidase-5 (GPX5) and androgen receptors (ARs) was analyzed. Our results showed that testosterone effectively increased EEC proliferation activity, and EECs cultured with testosterone could maintain molecular markers for up to 12 passages. Compared with the control group, 100 nM testosterone significantly increased the mRNA and protein expression of GPX5 (P < 0.05) and ARs (P < 0.01 and P < 0.05, respectively) in EECs, and this effect was blocked by the AR blocker enzalutamide. In conclusion, testosterone can promote the expression of GPX5 in EECs by up-regulating AR expression. We established an effective culture system for goat EECs which can be for further investigation on the regulation of epithelial function.


Epididymal epithelial cells Primary culture Testosterone GPX5 Androgen receptors 


Authors’ contributions

Z.L. designed the research, conducted experiments, and wrote the manuscript. X.F. performed the experiments and prepared the figures. H.S. and R.L. contributed to data acquisition. W.Z. and J.Z supervised the project and wrote the paper.

Funding information

This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (No. 2018MS03012).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Aitken RJ (2009) Gpx5 protects the family jewels. J Clin Investig 119:1849–1851PubMedGoogle Scholar
  2. Bassols J, Kádár E, Briz M, Pinart E, Sancho S, Garcia-Gil N, Badia E, Pruneda A, Bussalleu E, Yeste M, Casas I, Dacheux JL, Bonet S (2005) Evaluation of boar sperm maturation after co-incubation with caput, corpus and cauda epididymal cultures. Theriogenology 64:1995–2009CrossRefGoogle Scholar
  3. Blok LJ, Themmen AP, Peters AH, Trapman J, Baarends WM, Hoogerbrugge JW, Grootegoed JA (1992) Transcriptional regulation of androgen receptor gene expression in sertoli cells and other cell types. Mol Cell Endocrinol 88:153–164CrossRefGoogle Scholar
  4. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B, Garrel C, Saez F, Cadet R, Henry-Berger J, Schoor M, Gottwald U, Habenicht U, Drevet JR, Vernet P (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm dna integrity in mice. J Clin Investig 119:2074–2085PubMedGoogle Scholar
  5. Chauvin TR, Griswold MD (2004) Androgen-regulated genes in the murine epididymis. Biol Reprod 71:560–569CrossRefGoogle Scholar
  6. Dacheux JL, Dacheux F (2013) New insights into epididymal function in relation to sperm maturation. Reproduction 147:R27–R42CrossRefGoogle Scholar
  7. De Pauw IM, Goff AK, van Soom A, Verberckmoes S, De Kruif A (2003) Hormonal regulation of bovine secretory proteins derived from caput and cauda epididymal epithelial cell cultures. J Androl 24:401–407CrossRefGoogle Scholar
  8. Drevet JR (2006) The antioxidant glutathione peroxidase family and spermatozoa: a complex story. Mol Cell Endocrinol 250:70–79CrossRefGoogle Scholar
  9. Elkis Y, Bel S, Lerer-Goldstein T, Nyska A, Creasy DM, Shpungin S, Nir U (2013) Testosterone deficiency accompanied by testicular and epididymal abnormalities in (TMF−/−) mice. Mol Cell Endocrinol 365:52–63CrossRefGoogle Scholar
  10. Gagnon A, Sullivan R, Sirard MA (2000) Epididymal epithelial cells cultured in vitro prolong the motility of bovine sperm. J Androl 21:842–847PubMedGoogle Scholar
  11. Gharagozloo P, Gutierrez-adan A, Champroux A, Noblanc A, Kocer A, Calle A, Pérez-Cerezales S, Pericuesta E, Polhemus A, Moazamian A, Drevet JR, Aitken RJ (2016) A novel antioxidant formulation designed to treat male infertility associated with oxidative stress: promising preclinical evidence from animal models. Hum Reprod 31:252–262CrossRefGoogle Scholar
  12. Grignard E, Morin J, Vernet P, Drevet JR (2005) GPX5 orthologs of the mouse epididymis-restricted and sperm-bound selenium-independent glutathione peroxidase are not expressed with the same quantitative and spatial characteristics in large domestic animals. Theriogenology 64:1016–1033CrossRefGoogle Scholar
  13. Hamzeh M, Robaire B (2009) Effect of testosterone on epithelial cell proliferation in the regressed rat epididymis. J Androl 30:200–212CrossRefGoogle Scholar
  14. Hu H, Zheng N, Gao H, Dai W, Zhang Y, Li S, Wang J (2016) Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro. Cell Biol Int 40:861–872CrossRefGoogle Scholar
  15. Hwang TI, Liao TL, Lin JF, Lin YC, Lee SY, Lai YC, Kao SH (2011) Low-dose testosterone treatment decreases oxidative damage in TM3 leydig cells. Asian Journal of Andrology 13:432–437CrossRefGoogle Scholar
  16. Jalkanen J, Kotimäki M, Huhtaniemi I, Poutanen M (2006) Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochem Biophys Res Commun 349:245–254CrossRefGoogle Scholar
  17. Koziorowska-Gilun M, Gilun P, Fraser L, Koziorowski M, Kordan W, Stefanczyk-Krzymowska S (2013) Antioxidant enzyme activity and mRNA expression in reproductive tract of adult male European Bison (Bison bonasus, Linnaeus 1758). Reprod Domest Anim 48:7–14CrossRefGoogle Scholar
  18. Lareyre JJ, Claessens F, Rombauts W, Dufaure JP, Drevet JR (1997) Characterization of an androgen response element within the promoter of the epididymis-specific murine glutathione peroxidase 5 gene. Mol Cell Endocrinol 129:33–46CrossRefGoogle Scholar
  19. Leir SH, Browne JA, Eggener SE, Harris A (2015) Characterization of primary cultures of adult human epididymis epithelial cells. Fertil Steril 103:647–654CrossRefGoogle Scholar
  20. Li R, Fan X, Zhang T, Song H, Bian X, Nai R, Li J, Zhang J (2018) Expression of selenium-independent glutathione peroxidase 5 (GPx5) in the epididymis of small tail Han sheep. Asian-Australas Journal of Anim Science 31:1591–1597CrossRefGoogle Scholar
  21. Lin M, Zhang X, Murdoch R, Aitken RJ (2000) In vitro culture of brushtail possum (Trichosurusvulpecula) epididymal epithelium and induction of epididymal sperm maturation in co-culture. J Reprod Fertil 119:1–14CrossRefGoogle Scholar
  22. Lissbrant IF, Lissbrant E, Persson A, Damber JE, Bergh A (2003) Endothelial cell proliferation in male reproductive organs of adult rat is high and regulated by testicular factors1. Biol Reprod 68:1107–1111CrossRefGoogle Scholar
  23. Makary S, Abdo M, Fekry E (2018) Oxidative stress burden inhibits spermatogenesis in adult male rats: testosterone protective effect. Can J Physiol Pharmacol 96:372–381CrossRefGoogle Scholar
  24. Noblanc A, Peltier M, Damon-soubeyrand C, Kerchkove N, Chabory E, Vernet P, Saez F, Cadet R, Janny L, Pons-Rejraji H, Conrad M, Drevet JR, Kocer A (2012) Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. PLoS One 7:e38565CrossRefGoogle Scholar
  25. Park HJ, Lee WY, Jeong HY, Song H (2016) Regeneration of bovine mammary gland in immunodeficient mice by transplantation of bovine mammary epithelial cells mixed with matrigel. International journal of stem cells 9:186–191CrossRefGoogle Scholar
  26. Prabagaran E, Hegde UC, Moodbidri SB, Bandivdekar AH, Raghavan VP (2007) Postnatal expression and androgen regulation of HOXBES2 homeoprotein in rat epididymis. J Androl 28:755–771CrossRefGoogle Scholar
  27. Puglisi R, Maccari I, Pipolo S, Conrad M, Mangia F, Boitani C (2012) The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol 227:1420–1427CrossRefGoogle Scholar
  28. Qu B, Gu Y, Shen J, Qin J, Bao J, Hu Y, Zeng W, Dong W (2014) Trehalose maintains vitality of mouse epididymal epithelial cells and mediates gene transfer. PLoS One 9:e92483CrossRefGoogle Scholar
  29. Ribeiro CM, Silva EJ, Hinton BT, Avellar MC (2016) β-Defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian Journal of Andrology 18:323–328CrossRefGoogle Scholar
  30. Rosales GJ, Busolini FI, Mohamed FH, Filippa VP (2016) Effects of melatonin and gonadal androgens on cell proliferation in the pituitary of viscachas (lagostomus maximus maximus). Cell Prolif 49:644–653CrossRefGoogle Scholar
  31. Seki T, Abe-Seki N, Kikawada T, Takahashi H, Yamamoto K, Adachi N, Tanaka S, Hide I, Saito N, Sakai N (2010) Effect of trehalose on the properties of mutant γpkc, which causes spinocerebellar ataxia type 14, in neuronal cell lines and cultured purkinje cells. J Biol Chem 285:33252–33264CrossRefGoogle Scholar
  32. Taylor A, Robson A, Houghton BC, Jepson CA, Ford WC, Frayne J (2013) Epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-induced lipid peroxidation and DNA mutation. Hum Reprod 28:2332–2342CrossRefGoogle Scholar
  33. Thimon V, Koukoui O, Calvo E, Sullivan R (2007) Region-specific gene expression profiling along the human epididymis. Mol Hum Reprod 13:691–704CrossRefGoogle Scholar
  34. Williams K, Frayne J, Hall L (1998) Expression of extracellular glutathione peroxidase type 5 (GPX5) in the rat male reproductive tract. Mol Hum Reprod 4:841–848CrossRefGoogle Scholar
  35. Zhu LJ, Hardy MP, Inigo IV, Huhtaniemi I, Bardin CW, Moo-Young AJ (2000) Effects of androgen on androgen receptor expression in rat testicular and epididymal cells: a quantitative immunohistochemical study. Biol Reprod 63:368–376CrossRefGoogle Scholar
  36. Zuo WL, Li S, Huang JH, Yang DL, Zhang G, Chen SL, Ruan YC, Ye KN, Cheng CH, Zhou WL (2011) Sodium coupled bicarbonate influx regulates intracellular and apical ph in cultured rat caput epididymal epithelium. PLoS One 6:e22283CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.College of Animal ScienceInner Mongolia Agricultural UniversityHohhotChina
  2. 2.Inner Mongolia Autonomous RegionKey Laboratory of Animal Breeding and ReproductionInner Mongolia Agricultural UniversityHohhotChina
  3. 3.Basic Medical CollegeInner Mongolia Medical UniversityHohhotChina
  4. 4.Basic Medical CollegeShanxi Datong UniversityDatongChina

Personalised recommendations