Advertisement

In Vitro Cellular & Developmental Biology - Animal

, Volume 55, Issue 8, pp 586–597 | Cite as

Site-specific integration of rotavirus VP6 gene in rabbit β-casein locus by CRISPR/Cas9 system

  • Hongli Li
  • Zhipeng Li
  • Ning Xiao
  • Xiaoping Su
  • Shanshan Zhao
  • Yu Zhang
  • Kuiqing Cui
  • Qingyou LiuEmail author
  • Deshun ShiEmail author
Article
  • 173 Downloads

Abstract

Rotavirus (RV) is the leading cause of viral gastroenteritis in neonates and VP6 protein has been discussed as a potential candidate vaccine. CRISPR/Cas9 was the latest generation of gene editing tools that can mediate the site-specific knock-in of exogenous genes, providing strong support for the expression of recombinant proteins. Here, seeking to design a rotavirus vaccine that would be suitable for both mammary-gland-based production and milk-based administration, rabbit β-casein (CSN2) locus was chosen as the target site to integrate the VP6 gene. The efficiency of inducing mutations in different target sites of rabbit CSN2 locus was analyzed and g4 site seems to be the best one to generate mutations (g4 72.76 ± 0.32% vs g1 30.14 ± 1.93%, g2 38.53 ± 0.75%, g3 52.26 ± 1.16%, P < 0.05). We further compared the knock-in efficiency through cytoplasmic injection of two group mixtures (containing 100 ng/μL Cas9 mRNA or Cas9 protein, 20 ng/μL sgRNA4, and 100 ng/μL donor vector) in rabbit zygotes, though the Cas9 mRNA group induced an HDR efficiency as high as 20.0% ± 2.6% than Cas9 protein group (10.3% ± 3.1%), 37.5% of the knock-in events were partial integration in the target site, when Cas9 protein used in the CRISPR/Cas9 system, all of the positive blastocysts showed completely integrated, results showed that the use of Cas9 protein is better than Cas9 mRNA to integrate the correct exogenous gene into the target site. Moreover, the transgenic rabbit that harbored correct integration of VP6 gene was obtained using Cas9 protein group and was used to produce an experimental milk-based rotavirus vaccine. Our research provides a novel strategy to produce rotavirus subunit vaccine and make a foundation for building broader milk-based vaccine protection against other pathogens.

Keywords

CRISPR/Cas9 CSN2 Knock-in Rotavirus Rabbit VP6 

Notes

Acknowledgments

We acknowledge our friend Laiba Shafique for helping us in revising the manuscript.

Funding information

The authors would like to thank National Natural Science Foundation (Grant No. 31860638) and Guangxi Natural Science Foundation (Grant No. AA17204051 and AB16380042).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

Supplementary material

11626_2019_382_MOESM1_ESM.docx (25 kb)
ESM 1 (DOCX 25 kb)

References

  1. Arya SC, Agarwal N (2012) Apropos risks associated with the use of live-attenuated vaccine poliovirus strains and the strategies for control and eradication of paralytic poliomyelitis. Expert Rev Vaccines 11:609–628.  https://doi.org/10.1586/erv.12.110 CrossRefGoogle Scholar
  2. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 287:2185–2195.  https://doi.org/10.1126/science.287.5461.2185 CrossRefGoogle Scholar
  3. Blazevic V, Lappalainen S, Nurminen K, Huhti L, Vesikari T (2011) Norovirus VLPs and rotavirus VP6 protein as combined vaccine for childhood gastroenteritis. Vaccine 29:8126–8133.  https://doi.org/10.1016/j.vaccine.2011.08.026 CrossRefPubMedGoogle Scholar
  4. Bösze Z, Hiripi L (2012) Recombinant protein expression in milk of livestock species. Methods Mol Biol 824:629–641.  https://doi.org/10.1007/978-1-61779-433-9_34 CrossRefPubMedGoogle Scholar
  5. Burnett E, Jonesteller CL, Tate JE, Yen C, Parashar UD (2017) Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea. J Infect Dis 215:1666–1672.  https://doi.org/10.1093/infdis/jix186 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Burns JW, Siadat-Pajouh M, Krishnaney AA, Greenberg HB (1996) Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 272(80):104–107.  https://doi.org/10.1126/science.272.5258.104 CrossRefPubMedGoogle Scholar
  7. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CBA, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci 109:17382–17387.  https://doi.org/10.1073/pnas.1211446109 CrossRefPubMedGoogle Scholar
  8. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232.  https://doi.org/10.1038/nbt.2507 CrossRefPubMedGoogle Scholar
  9. Choi AH, McNeal MM, Basu M et al (2002) Intranasal or oral immunization of inbred and outbred mice with murine or human rotavirus VP6 proteins protects against viral shedding after challenge with murine rotaviruses. Vaccine 20:3310–3321.  https://doi.org/10.1016/S0264-410X(02)00315-8 CrossRefPubMedGoogle Scholar
  10. Choi AHC, McNeal MM, Basu M, Bean JA, VanCott J, Clements JD, Ward RL (2003) Functional mapping of protective epitopes within the rotavirus VP6 protein in mice belonging to different haplotypes. Vaccine. 21:761–767CrossRefPubMedGoogle Scholar
  11. Concordet J, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:1–4.  https://doi.org/10.1093/nar/gky354 CrossRefGoogle Scholar
  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(80):819–823.  https://doi.org/10.1126/science.1231143 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dennehy PH (2007) Rotavirus vaccines-an update. Vaccine 25:3137–3141.  https://doi.org/10.1016/j.vaccine.2007.01.102 CrossRefPubMedGoogle Scholar
  14. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32:1262–1267.  https://doi.org/10.1038/nbt.3026 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dong JL, Liang BG, Jin YS, Zhang WJ, Wang T (2005) Oral immunization with pBsVP6-transgenic alfalfa protects mice against rotavirus infection. Virology 339:153–163.  https://doi.org/10.1016/j.virol.2005.06.004 CrossRefPubMedGoogle Scholar
  16. Estes MK, Cohen J (1989) Rotavirus gene structure and function. Microbiol Rev 63:2555–2562.  https://doi.org/10.1111/jgs.13826 CrossRefGoogle Scholar
  17. Goveia MG, Rodriguez ZM, Dallas MJ, Itzler RF, Boslego JW, Heaton PM, DiNubile MJ (2007) Safety and efficacy of the pentavalent human-bovine (WC3) reassortant rotavirus vaccine in healthy premature infants. Pediatr Infect Dis J 26:1099–1104.  https://doi.org/10.1097/INF.0b013e31814521cb CrossRefPubMedGoogle Scholar
  18. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375.  https://doi.org/10.1038/cr.2014.11 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Houdebine LM (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:107–121.  https://doi.org/10.1016/j.cimid.2007.11.005 CrossRefPubMedGoogle Scholar
  20. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832.  https://doi.org/10.1038/nbt.2647 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jalilvand S, Marashi SM, Shoja Z (2015) Rotavirus VP6 preparations as a non-replicating vaccine candidates. Vaccine 33:3281–3287CrossRefPubMedGoogle Scholar
  22. Jiang B, Gentsch JR, Glass RI (2008) Inactivated rotavirus vaccines: a priority for accelerated vaccine development. Vaccine 26:6754–6758CrossRefPubMedGoogle Scholar
  23. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife. 2.  https://doi.org/10.7554/eLife.00471
  24. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019.  https://doi.org/10.1101/gr.171322.113 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lamrani A, Tubert-Bitter P, Hill C, Escolano S (2017) A benefit–risk analysis of rotavirus vaccination, France, 2015. Eurosurveillance 22:28–37.  https://doi.org/10.2807/1560-7917.ES.2017.22.50.17-00041 CrossRefGoogle Scholar
  26. Lappalainen S, Pastor AR, Malm M, López-Guerrero V, Esquivel-Guadarrama F, Palomares LA, Vesikari T, Blazevic V (2015) Protection against live rotavirus challenge in mice induced by parenteral and mucosal delivery of VP6 subunit rotavirus vaccine. Arch Virol 160:2075–2078.  https://doi.org/10.1007/s00705-015-2461-8 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683.  https://doi.org/10.1038/nbt.2661 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD (2017) Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol 241:136–146.  https://doi.org/10.1016/j.jbiotec.2016.11.011 CrossRefPubMedGoogle Scholar
  29. Lönnerdal B (2003) Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr 77:1537S–1543SCrossRefPubMedGoogle Scholar
  30. Lönnerdal B (2014) Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am J Clin Nutr 99:712S–717S.  https://doi.org/10.3945/ajcn.113.071993 CrossRefPubMedGoogle Scholar
  31. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(80):823–826.  https://doi.org/10.1126/science.1232033 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Matsumura T, Itchoda N, Tsunemitsu H (2002) Production of immunogenic VP6 protein of bovine group A rotavirus in transgenic potato plants: brief report. Arch Virol 147:1263–1270.  https://doi.org/10.1007/s00705-002-0808-4 CrossRefPubMedGoogle Scholar
  33. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J (2014) Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156:836–843.  https://doi.org/10.1016/j.cell.2014.01.027 CrossRefPubMedGoogle Scholar
  34. Ruiz-Palacios GM, Pérez-Schael I, Velázquez FR, Abate H, Breuer T, Clemens SAC, Cheuvart B, Espinoza F, Gillard P, Innis BL, Cervantes Y, Linhares AC, López P, Macías-Parra M, Ortega-Barría E, Richardson V, Rivera-Medina DM, Rivera L, Salinas B, Pavía-Ruz N, Salmerón J, Rüttimann R, Tinoco JC, Rubio P, Nuñez E, Guerrero ML, Yarzábal JP, Damaso S, Tornieporth N, Sáez-Llorens X, Vergara RF, Vesikari T, Bouckenooghe A, Clemens R, de Vos B, O'Ryan M (2006) Safety and efficacy of an attenuated vaccine against severe rotavirus gastroenteritis. N Engl J Med 354:11–22.  https://doi.org/10.1056/NEJMoa052434 CrossRefPubMedGoogle Scholar
  35. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–723.  https://doi.org/10.1038/cr.2013.46 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Soler E, Le Saux A, Guinut F et al (2005) Production of two vaccinating recombinant rotavirus proteins in the milk of transgenic rabbits. Transgenic Res 14:833–844.  https://doi.org/10.1007/s11248-005-1771-0 CrossRefPubMedGoogle Scholar
  37. Soler E, Parez N, Passet B, Dubuquoy C, Riffault S, Pillot M, Houdebine LM, Schwartz-Cornil I (2007) Recombinant rotavirus inner core proteins produced in the milk of transgenic rabbits confer a high level of protection after intrarectal delivery. Vaccine 25:6373–6380.  https://doi.org/10.1016/j.vaccine.2007.06.011 CrossRefPubMedGoogle Scholar
  38. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S (2006) Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5:1021–1029.  https://doi.org/10.1016/j.dnarep.2006.05.022 CrossRefGoogle Scholar
  39. Tang B, Gilbert JM, Matsui SM, Greenberg HB (1997) Comparison of the rotavirus gene 6 from different species by sequence analysis and localization of subgroup-specific epitopes using site-directed mutagenesis. Virology 237:89–96.  https://doi.org/10.1006/viro.1997.8762 CrossRefPubMedGoogle Scholar
  40. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32:670–676.  https://doi.org/10.1038/nbt.2889 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Yu J, Langridge W (2003) Expression of rotavirus capsid protein VP6 in transgenic potato and its oral immunogenicity in mice. Transgenic Res 12:163–169.  https://doi.org/10.1023/A:1022912130286 CrossRefPubMedGoogle Scholar
  42. Zhang JH, Pandey M, Kahler JF, Loshakov A, Harris B, Dagur PK, Mo YY, Simonds WF (2014) Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target specific DNA reporter. J Biotechnol 189:1–8.  https://doi.org/10.1016/j.jbiotec.2014.08.033 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi UniversityNanningChina

Personalised recommendations