Advertisement

Identification and functional characterization of lactadherin, an agglutinating glycoprotein from the chordate Styela clava

  • Xin Guo
  • Xiaoju Dou
  • Bo DongEmail author
Article
  • 37 Downloads

Abstract

Lactadherin is an extracellular matrix glycoprotein with stimulating agglutination ability that plays crucial roles in animal immunology. In the present study, a novel lactadherin, Sc-lactadherin, was identified from the marine invertebrate chordate, Styela clava. Its full-length cDNA consisted of 579 bps, encoding 193 amino acids with a coagulation FA58C domain. Recombinant Sc-lactadherin via a prokaryotic expression system showed strong hemocyte fusion activity. Therefore, we further examined its effects on cell behaviors using human umbilical vein endothelial cells (HUVECs) and human cervical cancer (HeLa) cells. Recombinant Sc-lactadherin significantly increased the proliferation rate of HUVECs and HeLa cells and improved the cell migration rate of HUVECs. These results demonstrated that the lactadherin identified from the marine ascidian displayed the agglutinating activity. Functional characterization of the recombinant protein showed that it promoted cell proliferation and migration, indicating the potential roles of Sc-lactadherin in immunology and organogenesis in marine ascidians.

Keywords

Lactadherin Styela clava Cell agglutination Cell proliferation Cell migration 

Notes

Acknowledgements

The HUVECs and HeLa cells were provided by Dr. Liu Ya (Ocean University of China, Qingdao, China).

Funding information

This work was supported by the National Key Research and Development Program of China (2018YFD0900705), the National Natural Science Foundation of China (Grant No. 31771649), the Fundamental Research Funds for the Central Universities (201822016), and the Taishan Scholar Program of Shandong Province, China (201502035).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. Borisenko GG, Iverson SL, Ahlberg S, Kagan VE, Fadeel B (2004) Milk fat globule epidermal growth factor 8 (MFG-E8) binds to oxidized phosphatidylserine: implications for macrophage clearance of apoptotic cells. Cell Death Differ 11:943–945CrossRefGoogle Scholar
  2. Bu HF, Zuo XL, Wang X, Ensslin MA, Koti V, Hsueh W, Raymond AS, Shur BD, Tan XD (2007) Milk fat globule-EGF factor 8/lactadherin plays a crucial role in maintenance and repair of murine intestinal epithelium. J Clin Invest 117:3673–3683Google Scholar
  3. Cheyuo C, Aziz M, Yang WL, Jacob A, Zhou M, Wang P (2015) Milk fat globule-EGF factor VIII attenuates CNS injury by promoting neural stem cell proliferation and migration after cerebral ischemia. PLoS One 10:e0122833CrossRefGoogle Scholar
  4. Finkielstein CV, Michael O, Capelluto DGS (2006) Cell migration and signaling specificity is determined by the phosphatidylserine recognition motif of Rac1. J Biol Chem 281:27317–27326CrossRefGoogle Scholar
  5. Franchi N, Ballarin L (2017) Immunity in protochordates: the tunicate perspective. Front Immunol 8:674CrossRefGoogle Scholar
  6. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177CrossRefGoogle Scholar
  7. Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G (2007) MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Investig 117:1902–1913CrossRefGoogle Scholar
  8. Kaminska A, Enguita FJ, Stepien EL (2018) Lactadherin: an unappreciated haemostasis regulator and potential therapeutic agent. Vasc Pharmacol 101:21–28CrossRefGoogle Scholar
  9. Kaoru M, Narudo K, Sonja R, Yasunori S (2012) Large-scale infection of the ascidian Ciona intestinalis by the gregarine Lankesteria ascidiae in an inland culture system. Dis Aquat Org 101:185–195CrossRefGoogle Scholar
  10. Lin L, Qing H, Mingdong H, Bruce F, Furie BC (2007) Crystal structure of the bovine lactadherin C2 domain, a membrane binding motif, shows similarity to the C2 domains of factor V and factor VIII. J Mol Biol 371:717–724CrossRefGoogle Scholar
  11. Moran A, Gu D, Zhao D, Coxson P, Wang YC, Chen CS, Liu J, Cheng J, Bibbins-Domingo K, Shen YM, He J, Goldman L (2010) Future cardiovascular disease in China: markov model and risk factor scenario projections from the coronary heart disease policy model-China. Circ Cardiovasc Qual Outcomes 3:243–252CrossRefGoogle Scholar
  12. Novakovic VA, Cullinan DB, Wakabayashi H, Fay PJ, Baleja JD, Gilbert GE (2011) Membrane-binding properties of the factor VIII C2 domain. Biochem J 435:187–196CrossRefGoogle Scholar
  13. Oshima K, Aoki N, Negi M, Kishi M, Kitajima K, Matsuda T (1999) Lactation-dependent expression of an mRNA splice variant with an exon for a multiply O-glycosylated domain of mouse milk fat globule glycoprotein MFG-E8. Biochem Biophys Res Commun 254:522–528CrossRefGoogle Scholar
  14. Oshima K, Yasueda T, Nishio S, Matsuda T (2014) MFG-E8: origin, structure, expression, functions and regulation. Springer, DordrechtGoogle Scholar
  15. Shi J, Gilbert GE (2003) Lactadherin inhibits enzyme complexes of blood coagulation by competing for phospholipid-binding sites. Blood 101:2628–2636CrossRefGoogle Scholar
  16. Shi J, Heegaard CW, Rasmussen JT, Gilbert GE (2004) Lactadherin binds selectively to membranes containing phosphatidyl-L-serine and increased curvature. Biochim Biophys Acta 1667:82–90CrossRefGoogle Scholar
  17. Silvestre J-S, Théry C, Hamard G, Boddaert J, Aguilar B, Delcayre A, Houbron C, Tamarat R, Blanc-Brude O, Heeneman S, Clergue M, Duriez M, Merval R, Lévy B, Tedgui A, Amigorena S, Mallat Z (2005) Lactadherin promotes VEGF-dependent neovascularization. Nat Med 11:499–506CrossRefGoogle Scholar
  18. Stubbs JD, Lekutis C, Singer KL, Bui A, Yuzuki D, Srinivasan U, Parry G (1990) cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc Natl Acad Sci U S A 87:8417–8421CrossRefGoogle Scholar
  19. Sugano G, Bernard-Pierrot I, Laé M, Battail C, Allory Y, Stransky N, Krumeich S, Lepage ML, Maille P, Donnadieu MH, Abbou CC, Benhamou S, Lebret T, Sastre-Garau X, Amigorena S, Radvanyi F, Théry C (2010) Milk fat globule—epidermal growth factor—factor VIII (MFGE8)/lactadherin promotes bladder tumor development. Oncogene 30:642CrossRefGoogle Scholar
  20. Tatsuya W, Rakuno T, Seiji M, Shun-Ichi K, Shingo S, Iyoko K, Shizuko K, Yoji I (2005) Production of the long and short forms of MFG-E8 by epidermal keratinocytes. Cell Tissue Res 321:185–193CrossRefGoogle Scholar
  21. Taylor MR, Couto JR, Scallan CD, Ceriani RL, Peterson JA (1997) Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion. DNA Cell Biol 16:861–869CrossRefGoogle Scholar
  22. Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, Telljohann R, Zhao M, Krug AW, Pikilidou M, Monticone RE, Wersto R, Van Eyk J, Lakatta EG (2012) MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell 11:500–508CrossRefGoogle Scholar
  23. Zhou YJ, Gao J, Yang HM, Yuan XL, Chen TX, He ZJ (2010) The role of the lactadherin in promoting intestinal DCs development in vivo and vitro. Clin Dev Immunol 2010:357541CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.Laboratory of Morphogenesis & Evolution, College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.Institute of Evolution & Marine BiodiversityOcean University of ChinaQingdaoChina
  4. 4.College of Agricultural Science and TechnologyTibet Vocational Technical CollegeLhasaChina

Personalised recommendations