Advertisement

Cyclin-dependent kinase 5 regulates proliferation, migration, tyrosinase activity, and melanin production in B16-F10 melanoma cells via the essential regulator p-CREB

  • Xiuqing Li
  • Ruifang Wang
  • Junzhen Zhang
  • Shanshan Yang
  • Kaiyuan Ji
  • Bin Du
  • Xuexian Liu
  • Bo Liu
  • Shuhui Qi
  • Qiong Jia
  • Ruiwen FanEmail author
Article
  • 86 Downloads

Abstract

Melanoma is an aggressive cancer with increasing incidence and a growing lifetime risk that arises from normal melanocytes or their precursors. A thorough understanding of the molecular mechanism of melanomagenesis and melanoma biology is essential for the diagnosis, prognostication, and therapy of melanoma. Cyclin-dependent protein kinase 5 (Cdk5) is one of the proteins highly expressed in B16-F10 melanoma cells that controls melanoma cell motility, invasiveness, and metastatic spread and might be a promising novel therapeutic target. The effect of Cdk5 on proliferation and migration, which are important for carcinogenesis, has not been reported. In the current study, we found that siRNA-mediated knockdown of Cdk5 in B16-F10 melanoma cells inhibited melanoma cell proliferation through downregulation of the CaMK4-p-CREB pathway, inhibited migration through downregulation of p-CREB, integrin beta 1, and integrin beta 5, and also inhibited tyrosinase activity and melanin production through p-CREB-MITF regulation. The results indicate that Cdk5 controls melanoma development, with an essential regulatory role for p-CREB.

Keywords

Melanoma Proliferation Migration Cdk5 Phosphorated CREB (p-CREB) 

Notes

Funding information

This work was supported by a Special Fund for the Young Sanjin Scholars Distinguished Professor (Ruiwen Fan) and Research Project Supported by Shanxi Scholarship Council of China (2017-072).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interests.

References

  1. Abdullah C, Wang X, Becker D (2011) Expression analysis and molecular targeting of cyclin-dependent kinases in advanced melanoma: functional analysis and molecular targeting of cyclin-dependent kinase family members in advanced melanoma. Cell Cycle 10(6):977–988CrossRefGoogle Scholar
  2. Anderson KA, Kane CD (1998) Ca2+/calmodulin-dependent protein kinase iv and calcium signaling. Biometals 11(4):331–343CrossRefGoogle Scholar
  3. Bertolotto C, Buscà R, Abbe P, Bille K, Aberdam E, Ortonne JP, Ballotti R (1998) Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 18:694–702CrossRefGoogle Scholar
  4. Bird C, Kirstein S (2009) Real-time, label-free monitoring of cellular invasion and migration with the xcelligence system. Nat Methods 6(8):v–viCrossRefGoogle Scholar
  5. Bisht S, Nolting J, Schütte U, Haarmann J, Jain P, Shah D, Brossart P, Flaherty P, Feldmann G (2015) Cyclin-dependent kinase 5 (cdk5) controls melanoma cell motility, invasiveness, and metastatic spread-identification of a promising novel therapeutic target1. Transl Oncol 8(4):295–307CrossRefGoogle Scholar
  6. Böhm M, Moellmann G, Cheng E, Alvarezfranco M, Wagner S, Sassonecorsi P, Halaban R (1995) Identification of p90rsk as the probable creb-ser133 kinase in human melanocytes. Cell Growth Differ 6(3):291–302Google Scholar
  7. Bok J, Wang Q, Huang HS (2007) CaMKII and CaMKIV mediate distinct prosurvival signaling pathways in response to depolarization in neurons. Mol Cell Neurosci 36(1):13–26CrossRefGoogle Scholar
  8. Chatila T, Anderson KA, Ho N, Means AR (1996) A unique phosphorylation-dependent mechanism for the activation of ca2+/calmodulin-dependent protein kinase type iv/gr. J Biol Chem 271(35):21542–21548CrossRefGoogle Scholar
  9. Chuong CM, Nickoloff BJ, Elias PM, Goldsmith LA, Macher E, Maderson PA, Sundberg JP, Tagami H, Plonka PM, Thestrup-Pedersen K, Bernard BA, Schröder JM, Dotto P, Chang CH, Williams ML, Feingold KR, King LE, Kligman AM, Rees JL, Christophers E (2002) Contoversies in experimental dermatology. Exp Dermatol 11(2):159–187CrossRefGoogle Scholar
  10. Dong C, Yang S, Fan R, Ji K, Zhang J, Liu X, Hu S, Xie J, Liu Y, Gao W, Wang H, Yao J, George WS, Muren H (2017) Functional role of cyclin-dependent kinase 5 in the regulation of melanogenesis and epidermal structure. Sci Rep 7(1):13783CrossRefGoogle Scholar
  11. Dong Y, Wang H, Cao J, Ren J, Fan R, He X, Smith GW, Dong C (2011) Nitric oxide enhances melanogenesis of alpaca skin melanocytes in vitro by activating the mitf phosphorylation. Mol Cell Biochem 352(1–2):255–260CrossRefGoogle Scholar
  12. Eilers U, Klumperman J, Hauri H (1989) Nocodazole, a microtubule-active drug, interferes with apical protein delivery in cultured intestinal epithelial cells (Caco-2). J Cell Biol 108(1):13–22CrossRefGoogle Scholar
  13. Jilaveanu LB, Aziz SA, Kluger HM (2009) Chemotherapy and biologic therapies for melanoma: do they work? Clin Dermatol 27(6):614–625CrossRefGoogle Scholar
  14. Kim A, Yang Y, Lee MS, Yoo YD, Lee HG, Lim JS (2010) Ndrg2 gene expression in b16f10 melanoma cells restrains melanogenesis via inhibition of mitf expression. Pigment Cell Melanoma Res 21(6):653–664CrossRefGoogle Scholar
  15. Lee DH, Lee HR, Shin HK, Park SY, Hong KW, Kim EK (2015) Cilostazol enhances integrin-dependent homing of progenitor cells by activation of camp-dependent protein kinase in synergy with epac1. J Neurosci Res 89(5):650–660CrossRefGoogle Scholar
  16. Lee JH, Shin HK, Park SY, Kim CD, Lee WS, Hong KW (2009) Cilostazol preserves ca1 hippocampus and enhances generation of immature neuroblasts in dentate gyrus after transient forebrain ischemia in rats. Exp Neurol 215(1):87–0–94CrossRefGoogle Scholar
  17. Li M, Zhang DQ, Wang XZ, Xu TJ (2011) Nr2b-containing nmda receptors promote neural progenitor cell proliferation through camkiv/creb pathway. Biochem Biophys Res Commun 411(4):667–672CrossRefGoogle Scholar
  18. Liu B, Barbosa-Sampaio H, Jones PM, Persaud SJ, Muller DS (2012) The camk4/creb/irs-2 cascade stimulates proliferation and inhibits apoptosis of β-cells. PLoS One 7(9):e45711CrossRefGoogle Scholar
  19. Liu J, Fukunagakalabis M, Li L, Herlyn M (2014) Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys 563:13–21CrossRefGoogle Scholar
  20. Liu X, Zhang P, Ji K, et al (2017) Cyclin-dependent kinase 5 regulates MAPK/ERK signaling in the skin of mice. Acta Histochemica 120(1):S0065128117302970Google Scholar
  21. Redmond L, Kashani AH, Ghosh A (2002) Calcium regulation of dendritic growth via cam kinase iv and creb-mediated transcription. Neuron 34(6):999–1010CrossRefGoogle Scholar
  22. Ross CL, Kaushik S, Valdesrodriguez R, Anvekar R (2018) Micrornas in cutaneous melanoma: role as diagnostic and prognostic biomarkers. J Cell Physiol 233(1):5133–5141CrossRefGoogle Scholar
  23. Scolyer RA (2018) Whole genome landscapes of major melanoma subtypes. Pathology 50:S8CrossRefGoogle Scholar
  24. Tian B, Yang Q, Mao Z (2009) Phosphorylation of atm by cdk5 mediates dna damage signalling and regulates neuronal death. Nat Cell Biol 11(2):211–218CrossRefGoogle Scholar
  25. Tobin DJ (2005) Biochemistry of human skin — our brain on the outside. Cheminform 35(1):52–67Google Scholar
  26. Tripathi BK, Zelenka PS (2010) Cdk5 a regulator of epithelial cell adhesion and migration. Cell Adhes Migr 4(3):333–336CrossRefGoogle Scholar
  27. Vachtenheim J, Borovanský J (2010) "transcription physiology" of pigment formation in melanocytes: central role of mitf. Exp Dermatol 19(7):617–627CrossRefGoogle Scholar
  28. Winkler J, Roessler S, Sticht C, Diguilio AL, Drucker E, Holzer K, Eiteneuer E, Herpel E, Breuhahn K, Gretz N, Schirmacher P, Ori A, Singer S (2016) Cellular apoptosis susceptibility (cas) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (hcc). Oncotarget 7(16):22883–22892CrossRefGoogle Scholar
  29. Yang S, Fan R, Shi Z, Ji K, Zhang J, Wang H, Herrid M, Zhang Q, Yao J, Smith JW, Dong C (2015) Identification of a novel microrna important for melanogenesis in alpaca (vicugna pacos). J Anim Sci 93(4):1622–1631CrossRefGoogle Scholar
  30. Yu X, Murao K, Sayo Y, Imachi H, Cao WM, Ohtsuka S (2004) The role of calcium/calmodulin-dependent protein kinase cascade in glucose upregulation of insulin gene expression. Diabetes 53(6):1475–1481CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.College of Animal Science and Veterinary MedicineShanxi Agricultural UniversityTaiguChina
  2. 2.College of Animal Science and Veterinary MedicineAnhui Agricultural UniversityHefeiChina

Personalised recommendations