Advertisement

Human menstrual blood–derived stem cells protect H9c2 cells against hydrogen peroxide–associated apoptosis

  • Song Chen
  • Chuanming Dong
  • Jinyun Zhang
  • Baohua Tang
  • Zhengrong Xi
  • Fei Cai
  • Yachi Gong
  • Jianru Xu
  • Longju Qi
  • Qinghua WangEmail author
  • Jian ChenEmail author
Article
  • 75 Downloads

Abstract

Human menstrual blood–derived mesenchymal stem cells (MenSCs) hold great promise for regenerative medicine. Here, H2O2-associated damage in H9c2 cells was employed as an in vitro ischemia–reperfusion model, and the transwell system was used to explore the beneficial effects of MenSCs on the H2O2-induced damage of myocardial H9c2 cells. H2O2 treatment resulted in decreased viability and migration rate, with increased apoptosis levels in cells. By contrast, upon co-culture with MenSCs, H9c2 cell viability and migration were increased, whereas the apoptotic rate decreased. Additionally, western blot and qRT-PCR showed that MenSCs mediated the anti-apoptotic role by downregulating the pro-apoptotic genes Bax and caspase-3, while upregulating the anti-apoptotic effector Bcl-2. Furthermore, co-culture with MenSCs resulted in elevated expression of N-cadherin after H2O2 treatment. These findings indicate that MenSCs protect H9c2 cells against H2O2-associated programmed cell death and would help develop therapeutic tools for cardiomyocyte apoptosis associated with oxidative stress.

Keywords

Menstrual blood–derived mesenchymal stem cell H9c2 cell Apoptosis Myocardial ischemia–reperfusion injury 

Notes

Funding information

This work was supported by Nantong Science and Technology Project (MS22016030), the National Natural Science Foundation of China (81501189), and Jiangsu Government Scholarship for Overseas Studies (JS-2016-061).

Compliance with ethical standards

All procedures were performed after informed consent provision by the volunteers, with approval from the Ethics Committee of Nantong Maternal and Child Health Care Hospital, affiliated to Nantong University, China (license no. is 2016-023).

References

  1. Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326CrossRefGoogle Scholar
  2. Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376:2053–2064CrossRefGoogle Scholar
  3. Bockeria L, Bogin V, Bockeria O, Le T, Alekyan B, Woods EJ, Brown AA, Ichim TE, Patel AN (2013) Endometrial regenerative cells for treatment of heart failure: a new stem cell enters the clinic. J Transl Med 11:56CrossRefGoogle Scholar
  4. Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG, Sanberg CD, Kuzmin-Nichols N, Sanberg PR (2010) Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 19:439–452CrossRefGoogle Scholar
  5. Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711CrossRefGoogle Scholar
  6. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12:574–591CrossRefGoogle Scholar
  7. Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377CrossRefGoogle Scholar
  8. Fatkhudinov T, Bolshakova G, Arutyunyan I, Elchaninov A, Makarov A, Kananykhina E, Khokhlova O, Murashev A, Glinkina V, Goldshtein D (2015) Bone marrow-derived multipotent stromal cells promote myocardial fibrosis and reverse remodeling of the left ventricle. Stem Cells Int 2015:746873CrossRefGoogle Scholar
  9. Forouzanfar MH, Moran AE, Flaxman AD, Roth G, Mensah GA, Ezzati M, Naghavi M, Murray CJ (2012) Assessing the global burden of ischemic heart disease, part 2: analytic methods and estimates of the global epidemiology of ischemic heart disease in 2010. Glob Heart 7:331–342CrossRefGoogle Scholar
  10. Fu Y, Karbaat L, Wu L, Leijten J, Both SK, Karperien M (2017) Trophic effects of mesenchymal stem cells in tissue regeneration. Tissue Eng B Rev 23:515–528CrossRefGoogle Scholar
  11. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:742–758CrossRefGoogle Scholar
  12. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433CrossRefGoogle Scholar
  13. Gavert N, Ben-Ze'ev A (2008) Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med 14:199–209CrossRefGoogle Scholar
  14. Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508CrossRefGoogle Scholar
  15. Gustafsson AB, Gottlieb RA (2003) Mechanisms of apoptosis in the heart. J Clin Immunol 23:447–459CrossRefGoogle Scholar
  16. Hohensinner PJ, Takacs N, Kaun C, Thaler B, Krychtiuk KA, Pfaffenberger S, Aliabadi A, Zuckermann A, Huber K, Wojta J (2017) Urokinase plasminogen activator protects cardiac myocytes from oxidative damage and apoptosis via hOGG1 induction. Apoptosis 22:1048–1055CrossRefGoogle Scholar
  17. Imanishi Y, Saito A, Komoda H, Kitagawa-Sakakida S, Miyagawa S, Kondoh H, Ichikawa H, Sawa Y (2008) Allogenic mesenchymal stem cell transplantation has a therapeutic effect in acute myocardial infarction in rats. J Mol Cell Cardiol 44:662–671CrossRefGoogle Scholar
  18. Khanmohammadi M, Khanjani S, Edalatkhah H, Zarnani AH, Heidari-Vala H, Soleimani M, Alimoghaddam K, Kazemnejad S (2014) Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage. Cell Prolif 47:615–623CrossRefGoogle Scholar
  19. Kovecsi A, Gurzu S, Szentirmay Z, Kovacs Z, Bara TJ, Jung I (2017) Paradoxical expression pattern of the epithelial mesenchymal transition-related biomarkers CD44, SLUG, N-cadherin and VSIG1/glycoprotein A34 in gastrointestinal stromal tumors. World J Gastrointest Oncol 9:436–443CrossRefGoogle Scholar
  20. Lee Y, Gustafsson AB (2009) Role of apoptosis in cardiovascular disease. Apoptosis 14:536–548CrossRefGoogle Scholar
  21. Lv Y, Xu X, Zhang B, Zhou G, Li H, Du C, Han H, Wang H (2014) Endometrial regenerative cells as a novel cell therapy attenuate experimental colitis in mice. J Transl Med 12:344CrossRefGoogle Scholar
  22. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5:57CrossRefGoogle Scholar
  23. Mothe AJ, Tator CH (2012) Advances in stem cell therapy for spinal cord injury. J Clin Invest 122:3824–3834CrossRefGoogle Scholar
  24. Murphy MP, Wang H, Patel AN, Kambhampati S, Angle N, Chan K, Marleau AM, Pyszniak A, Carrier E, Ichim TE (2008) Allogeneic endometrial regenerative cells: an “off the shelf solution” for critical limb ischemia? J Transl Med 6:45CrossRefGoogle Scholar
  25. Nadanaka S, Kinouchi H, Kitagawa H (2018) Chondroitin sulfate-mediated N-cadherin/beta-catenin signaling is associated with basal-like breast cancer cell invasion. J Biol Chem 293:444–465CrossRefGoogle Scholar
  26. Patel AN, Park E, Kuzman M, Benetti F, Silva FJ, Allickson JG (2008) Multipotent menstrual blood stromal stem cells: isolation, characterization, and differentiation. Cell Transplant 17:303–311CrossRefGoogle Scholar
  27. Rosdah AA, Bond ST, Sivakumaran P, Hoque A, Oakhill JS, Drew BG, Delbridge LMD, Lim SY (2017) Mdivi-1 protects human W8B2(+) cardiac stem cells from oxidative stress and simulated ischemia-reperfusion injury. Stem Cells Dev 26:1771–1780CrossRefGoogle Scholar
  28. Scarabelli TM, Stephanou A, Pasini E, Comini L, Raddino R, Knight RA, Latchman DS (2002) Different signaling pathways induce apoptosis in endothelial cells and cardiac myocytes during ischemia/reperfusion injury. Circ Res 90:745–748CrossRefGoogle Scholar
  29. Sharikabad MN, Ostbye KM, Brors O (2004) Effect of hydrogen peroxide on reoxygenation-induced Ca2+ accumulation in rat cardiomyocytes. Free Radic Biol Med 37:531–538CrossRefGoogle Scholar
  30. Soleymaninejadian E, Pramanik K, Samadian E (2012) Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 67:1–8CrossRefGoogle Scholar
  31. Song N, Zhong J, Hu Q, Gu T, Yang B, Zhang J, Yu J, Ma X, Chen Q, Qi J (2018) FGF18 enhances migration and the epithelial-mesenchymal transition in breast cancer by regulating Akt/GSK3beta/beta-catenin signaling. Cell Physiol Biochem 49:1019–1032CrossRefGoogle Scholar
  32. Toldo S, Breckenridge DG, Mezzaroma E, Van Tassell BW, Shryock J, Kannan H, Phan D, Budas G, Farkas D, Lesnefsky E (2012) Inhibition of apoptosis signal-regulating kinase 1 reduces myocardial ischemia-reperfusion injury in the mouse. J Am Heart Assoc 1:e002360CrossRefGoogle Scholar
  33. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17:11–22CrossRefGoogle Scholar
  34. von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941CrossRefGoogle Scholar
  35. Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47:125–131CrossRefGoogle Scholar
  36. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111:1497–1504CrossRefGoogle Scholar
  37. Wu X, Luo Y, Chen J, Pan R, Xiang B, Du X, Xiang L, Shao J, Xiang C (2014) Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev 23:1245–1257CrossRefGoogle Scholar
  38. Yan X, Yan L, Liu S, Shan Z, Tian Y, Jin Z (2015) N-cadherin, a novel prognostic biomarker, drives malignant progression of colorectal cancer. Mol Med Rep 12:2999–3006CrossRefGoogle Scholar
  39. Youn SW, Lee HC, Lee SW, Lee J (2018) COMP-Angiopoietin-1 accelerates muscle regeneration through N-cadherin activation. Sci Rep 8:12323CrossRefGoogle Scholar
  40. Zhang L, Wang K, Lei Y, Li Q, Nice EC, Huang C (2015) Redox signaling: potential arbitrator of autophagy and apoptosis in therapeutic response. Free Radical Biol Med 89:452–465CrossRefGoogle Scholar
  41. Zhao L, Yang G, Zhao X (2014) Rho-associated protein kinases play an important role in the differentiation of rat adipose-derived stromal cells into cardiomyocytes in vitro. PLoS One 9:e115191CrossRefGoogle Scholar
  42. Zhu GJ, Song PP, Zhou H, Shen XH, Wang JG, Ma XF, Gu YJ, Liu DD, Feng AN, Qian XY (2018) Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, beta-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncol Lett 15:3472–3481Google Scholar

Copyright information

© The Society for In Vitro Biology 2019

Authors and Affiliations

  1. 1.Department of CardiologyNantong Maternal and Child Health Care HospitalNantongChina
  2. 2.Department of AnatomyMedical School of Nantong University, Laboratory Animal Center of Nantong UniversityNantongChina
  3. 3.Department of EmergencyNantong Maternal and Child Health Care HospitalNantongChina
  4. 4.Department of CardiologyNantong Third People’s HospitalNantongChina
  5. 5.Department of Geriatric MedicineNantong Third People’s HospitalNantongChina
  6. 6.Department of EmergencyNantong Third People’s HospitalNantongChina
  7. 7.Department of Interventional TherapyNantong Third People’s HospitalNantongChina

Personalised recommendations