A novel long non-coding RNA, lncKBTBD10, involved in bovine skeletal muscle myogenesis

  • Mingming Chen
  • Xin Li
  • Xiaojuan Zhang
  • Yan Li
  • Junxing Zhang
  • Minhui Liu
  • Linlin Zhang
  • Xiangbin Ding
  • Xinfeng LiuEmail author
  • Hong GuoEmail author


Accumulating evidence suggests that long non-coding RNAs (lncRNAs) play a crucial role in regulating skeletal muscle myogenesis, a highly coordinated multistep biological process. However, most studies of lncRNAs have focused on humans, mouse, and other model animals. In this study, we identified a novel lncRNA, named lncKBTBD10, located in the nucleus and involved in the proliferation and differentiation of bovine skeletal muscle satellite cells. Prediction of coding potential and in vitro translation system illustrated that lncKBTBD10 has no encoding capability. With the process of myogenic differentiation, the expression of lncKBTBD10 gradually increased. To elucidate the functions of lncKBTBD10 during myogenesis, the gain/loss-of-function experiments were performed. Results showed that the proliferation and differentiation of bovine skeletal muscle satellite cells were all suppressed whether lncKBTBD10 was knocked down or over-expressed. Furthermore, we found that lncKBTBD10 may affect its proximity gene KBTBD10 to involve in myogenesis. Results indicated that the protein level of KBTBD10 was all diminished after induced differentiation for 2 d in differentiation medium (DM2) whether lncKBTBD10 was knocked down or over-expressed. It may support why the altering of lncKBTBD10 can suppress the proliferation and differentiation of bovine skeletal muscle satellite cells. In short, our study elucidated that lncKBTBD10 could induce a decrease of KBTBD10 protein and further to affect bovine skeletal muscle myogenesis. The novel identified lncKBTBD10 may provide a reference for lncRNAs involved in myogenesis of bovine skeletal muscle.


lncKBTBD10 Bovine Skeletal muscle KBTBD10 Myogenesis 


Funding information

This work was supported by grants from the National Natural Science Foundation of China (No.31572380) and the Natural Science Foundation of Tianjin City (No.15JCZDJC33700).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11626_2018_306_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)
11626_2018_306_Fig5_ESM.png (2.2 mb)
Supplementary Fig. 1

(PNG 2234 kb)

11626_2018_306_MOESM2_ESM.tiff (3 mb)
High Resolution Image (TIFF 3070 kb)
11626_2018_306_Fig6_ESM.png (25 kb)
Supplementary Fig. 2

(PNG 24 kb)

11626_2018_306_MOESM3_ESM.tiff (680 kb)
High Resolution Image (TIFF 679 kb)
11626_2018_306_Fig7_ESM.png (555 kb)
Supplementary Fig. 3

(PNG 555 kb)

11626_2018_306_MOESM4_ESM.tiff (4.4 mb)
High Resolution Image (TIFF 4471 kb)


  1. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspectives in Biology 4:441-441Google Scholar
  2. Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595CrossRefGoogle Scholar
  3. Billerey C, Boussaha M, Esquerre D, Rebours E, Djari A, Meersseman C, Klopp C, Gautheret D, Rocha D (2014) Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 15:499CrossRefGoogle Scholar
  4. Bond AM, Vangompel MJ, Sametsky EA, Clark MF, Savage JC, Disterhoft JF, Kohtz JD (2009) Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci 12:1020–1027CrossRefGoogle Scholar
  5. Bradley PL, Andrew DJ (2001) Ribbon encodes a novel BTB/POZ protein required for directed cell migration in Drosophila melanogaster. Development 128:3001–3015Google Scholar
  6. Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12:349–361CrossRefGoogle Scholar
  7. Buckingham M (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev 16:525–532CrossRefGoogle Scholar
  8. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927CrossRefGoogle Scholar
  9. Canning P, Cooper CD, Krojer T, Murray JW, Pike AC, Chaikuad A, Keates T, Thangaratnarajah C, Hojzan V, Ayinampudi V, Marsden BD, Gileadi O, Knapp S, von Delft F, Bullock AN (2013) Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J Biol Chem 288:7803–7814CrossRefGoogle Scholar
  10. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369CrossRefGoogle Scholar
  11. Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772CrossRefGoogle Scholar
  12. Chen LL, Carmichael GG (2010) Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol 22:357–364CrossRefGoogle Scholar
  13. Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2016) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 52:27–34CrossRefGoogle Scholar
  14. Delpretti S, Montavon T, Leleu M, Joye E, Tzika A, Milinkovitch M, Duboule D (2013) Multiple enhancers regulate Hoxd genes and the Hotdog LncRNA during cecum budding. Cell Rep 5:137–150CrossRefGoogle Scholar
  15. Gong C, Li Z, Ramanujan K, Clay I, Zhang Y, Lemire-Brachat S, Glass DJ (2015) A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev Cell 34:181–191CrossRefGoogle Scholar
  16. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214CrossRefGoogle Scholar
  17. Guo Y, Wang J, Zhu M, Zeng R, Xu Z, Li G, Zuo B (2017) Identification of MyoD-responsive transcripts reveals a novel long non-coding RNA (lncRNA-AK143003) that negatively regulates myoblast differentiation. Sci Rep 7:2828CrossRefGoogle Scholar
  18. Gupta VA, Beggs AH (2014) Kelch proteins: emerging roles in skeletal muscle development and diseases. Skelet Muscle 4:11CrossRefGoogle Scholar
  19. Gupta VA, Ravenscroft G, Shaheen R, Todd EJ, Swanson LC, Shiina M, Ogata K, Hsu C, Clarke NF, Darras BT, Farrar MA, Hashem A, Manton ND, Muntoni F, North KN, Sandaradura SA, Nishino I, Hayashi YK, Sewry CA, Thompson EM, Yau KS, Brownstein CA, Yu TW, Allcock RJ, Davis MR, Wallgren-Pettersson C, Matsumoto N, Alkuraya FS, Laing NG, Beggs AH (2013) Identification of KLHL41 mutations implicates BTB-Kelch-mediated ubiquitination as an alternate pathway to myofibrillar disruption in nemaline myopathy. Am J Hum Genet 93:1108–1117CrossRefGoogle Scholar
  20. Han X, Yang F, Cao H, Liang Z (2015) Malat1 regulates serum response factor through miR-133 as a competing endogenous RNA in myogenesis. FASEB J 29:3054–3064CrossRefGoogle Scholar
  21. Jin CF, Li Y, Ding XB, Li X, Zhang LL, Liu XF, Guo H (2017) lnc133b, a novel, long non-coding RNA, regulates bovine skeletal muscle satellite cell proliferation and differentiation by mediating miR-133b. Gene 630:35–43CrossRefGoogle Scholar
  22. Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y (2013) The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52:101–112CrossRefGoogle Scholar
  23. Koufariotis LT, Chen YP, Chamberlain A, Vander Jagt C, Hayes BJ (2015) A catalogue of novel bovine long noncoding RNA across 18 tissues. PLoS One 10:e0141225CrossRefGoogle Scholar
  24. Liu XF, Ding XB, Li X, Jin CF, Yue YW, Li GP, Guo H (2017) An atlas and analysis of bovine skeletal muscle long noncoding RNAs. Anim Genet 48:278–286CrossRefGoogle Scholar
  25. Lopez-Pajares V (2016) Long non-coding RNA regulation of gene expression during differentiation. Pflugers Arch 468:971–981CrossRefGoogle Scholar
  26. Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Doring C, Zhang L, Nakamura M, Kumar A, Fukada SI, Dimmeler S, Uchida S (2018) A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol 10:102–117CrossRefGoogle Scholar
  27. Neuhaus P, Jaschinsky B, Schneider S, Neuhaus H, Wolter A, Ebelt H, Braun T (2006) Overexpression of Kelch domain containing-2 (mKlhdc2) inhibits differentiation and directed migration of C2C12 myoblasts. Exp Cell Res 312:3049–3059CrossRefGoogle Scholar
  28. Paxton CW, Cosgrove RA, Drozd AC, Wiggins EL, Woodhouse S, Watson RA, Spence HJ, Ozanne BW, Pell JM (2011) BTB-Kelch protein Krp1 regulates proliferation and differentiation of myoblasts. Am J Physiol Cell Physiol 300:C1345–C1355CrossRefGoogle Scholar
  29. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62CrossRefGoogle Scholar
  30. Ramirez-Martinez A, Cenik BK, Bezprozvannaya S, Chen B, Bassel-Duby R, Liu N, Olson EN (2017) KLHL41 stabilizes skeletal muscle sarcomeres by nonproteolytic ubiquitination. Elife 6:e26439Google Scholar
  31. Simionescu-Bankston A, Kumar A (2016) Noncoding RNAs in the regulation of skeletal muscle biology in health and disease. J Mol Med (Berl) 94:853–866CrossRefGoogle Scholar
  32. Sun X, Li M, Sun Y, Cai H, Lan X, Huang Y, Bai Y, Qi X, Chen H (2016) The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b. Biochim Biophys Acta 1863:2835–2845CrossRefGoogle Scholar
  33. Tahira AC, Kubrusly MS, Faria MF, Dazzani B, Fonseca RS, Maracaja-Coutinho V, Verjovski-Almeida S, Machado MC, Reis EM (2011) Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer. Mol Cancer 10:141CrossRefGoogle Scholar
  34. Xu X, Ji S, Li W, Yi B, Li H, Zhang H, Ma W (2017) LncRNA H19 promotes the differentiation of bovine skeletal muscle satellite cells by suppressing Sirt1/FoxO1. Cell Mol Biol Lett 22:10CrossRefGoogle Scholar
  35. Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, Huang J, Li M, Wu X, Wen L, Lao K, Li R, Qiao J, Tang F (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139CrossRefGoogle Scholar
  36. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67CrossRefGoogle Scholar
  37. Yue Y, Jin C, Chen M, Zhang L, Liu X, Ma W, Guo H (2017) A lncRNA promotes myoblast proliferation by up-regulating GH1. In Vitro Cell Dev Biol Anim 53:699–705CrossRefGoogle Scholar
  38. Zanou N, Gailly P (2013) Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 70:4117–4130CrossRefGoogle Scholar
  39. Zhang DD, Lo SC, Sun Z, Habib GM, Lieberman MW, Hannink M (2005) Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem 280:30091–30099CrossRefGoogle Scholar
  40. Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G, Zhang BT (2018) A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle 9:613:626 Google Scholar
  41. Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, Lu L, Chen X, Chen F, Bao X, Zhu X, Wang L, Tang LY, Esteban MA, Wang CC, Jauch R, Sun H, Wang H (2015) Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun 6:10026CrossRefGoogle Scholar
  42. Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, Chen X, Ma Y, Hu S, Wang Z, Hong A, Li Y, Sun Y, Wang X (2017) Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun 8:14718CrossRefGoogle Scholar

Copyright information

© The Society for In Vitro Biology 2018

Authors and Affiliations

  • Mingming Chen
    • 1
  • Xin Li
    • 1
  • Xiaojuan Zhang
    • 1
  • Yan Li
    • 1
  • Junxing Zhang
    • 1
  • Minhui Liu
    • 1
  • Linlin Zhang
    • 1
  • Xiangbin Ding
    • 1
  • Xinfeng Liu
    • 1
    Email author
  • Hong Guo
    • 1
    Email author
  1. 1.College of Animal Science and Veterinary MedicineTianjin Agricultural UniversityTianjinChina

Personalised recommendations