Advertisement

Evaluating climate change adaptation pathways through capital assessment: five case studies of forest social-ecological systems in France

  • Roxane SansilvestriEmail author
  • Marlène Cuccarollo
  • Nathalie Frascaria-Lacoste
  • Marta Benito-Garzon
  • Juan Fernandez-Manjarrés
Original Article
Part of the following topical collections:
  1. Sustainability Transitions, Management, and Governance

Abstract

Forest social-ecological systems (FSESs) can play a major role in both the mitigation of climate change, as well as the adaptation of local communities to it. In Europe, however, forests are highly fragmented and located close to human populations. This means that maintaining forest sustainability implies not only increasing ecosystem adaptation but also developing social adaptation. Hence, there is a need to understand the current priorities and management goals of forestry stakeholders, as well as their capacity to achieve functional and sustainable FSES in the future. The present study uses an interdisciplinary approach to evaluate stakeholders’ capacity to deal with climate change and top-down policies in different FSESs. We selected five FSESs in France that exhibit a range of climatic threats and socio-economic characteristics to estimate their adaptive capacity and transformative potential. The estimation is based on an assessment of different types of capital (i.e. natural, social, resources, governance) that involves evaluating 70 indicators through more than 70 semi-structured interviews with local stakeholders. Our results highlight that forest management in France, and more broadly in Europe, is mainly based on technical approaches, which build stakeholders’ confidence in their capacity to maintain the status quo. We observe asymmetry in capital distribution in some FSES, mainly through the maximization of the resources capital, which can constraint FSESs in a robustness trap. To develop adaptive capacity for small perturbations as well as transformability, forestry stakeholders should be encouraged to compromises. More balanced capital distribution, with decreased economic benefits, along with new technical approaches and changes to the landscape composition could be necessary to ensure the long-term adaptability of FSES to climate change.

Keywords

Adaptive capacity Robustness trap Transformability Compromise Social capital Natural capital 

Notes

Acknowledgements

We are grateful for funding from the French National Research Agency (ANR), which provided support for the doctoral position of R. Sansilvestri through the AMTools French ANR project (ANR-11-AGRO-0005). We would also like to thank Laurent Simon for his helpful advice on natural capital issues. Finally, we would sincerely like to thank all the stakeholders who participated in the interviews and gave their time to the project.

Supplementary material

11625_2019_731_MOESM1_ESM.docx (451 kb)
Supplementary material 1 (DOCX 451 kb)

References

  1. Adger WN (2003) Social capital, collective action, and adaptation to climate change. Econ Geogr 79:387–404CrossRefGoogle Scholar
  2. Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst 44:367–388.  https://doi.org/10.1146/annurev-ecolsys-110512-135747 CrossRefGoogle Scholar
  3. Anderies JM, Janssen MA, Ostrom E (2004) A framework to analyze the robustness of social-ecological systems from an institutional perspective. Ecol Soc 9:1–28CrossRefGoogle Scholar
  4. Anderies JM, Folke C, Walker B, Ostrom E (2013) Aligning key concepts for global change policy: robustness, resilience, and sustainability. Ecol Soc 18(2):8CrossRefGoogle Scholar
  5. Arnould P, Marty P, Simon L (2002) Deux siècles d’aménagements forestiers: trois situations aux marges meridionales de la France. Eria 58:251–267Google Scholar
  6. Barthod C (1998) La multifonctionnalité des forêts entre discours et pratiques: illusion ou réalité à assumer? Rev For Française, numéro spécial annuel: 215–227Google Scholar
  7. Berdoulay V, Soubeyran O (2014) Adaptation, science de la durabilité et pensée planificatrice. Nat Sci Sociétés 22:114–123CrossRefGoogle Scholar
  8. Bolte A, Ammer C, Löf M et al (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482.  https://doi.org/10.1080/02827580903418224 CrossRefGoogle Scholar
  9. Bourdieu P (1986) The forms of capital. In: Richardson J (ed) Handbook of theory and research for the sociology of education. Greenwood, Westport, pp 241–258Google Scholar
  10. Boutefeu B, Arnould P (2006) Le métier de forestier: entre rationalité et sensibilité. Environ Cult Société 58(1):61–72Google Scholar
  11. Brang P, Spathelf P, Larsen JB et al (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503CrossRefGoogle Scholar
  12. Cardinale BJ, Matulich KL, Hooper DU et al (2011) The functional role of producer diversity in ecosystems. Am J Bot 98:572–592.  https://doi.org/10.3732/ajb.1000364 CrossRefGoogle Scholar
  13. Dedeurwaerdere T (2005) The contribution of network governance to sustainable development. Les séminaires l’Iddri 13:1–15Google Scholar
  14. Dupuis J, Knoepfel P (2013) The adaptation policy paradox: the implementation deficit of policies. Ecol Soc 18(4):31CrossRefGoogle Scholar
  15. Evelya C, Fazey I, Pinard M, Lambin X (2008) The influence of philosophical perspectives in integrative research: a conservation case study in the cairngorms national park. Ecol Soc 13:52CrossRefGoogle Scholar
  16. Fazey I, Fischer J (2009) Assisted colonization is a techno-fix. Trends Ecol Evol 24:475–476.  https://doi.org/10.1016/j.tree.2009.05.003 CrossRefGoogle Scholar
  17. Fazey I, Gamarra JGP, Fischer J et al (2010) Adaptation strategies for reducing vulnerability to future environmental change. Front Ecol Environ 8:414–422.  https://doi.org/10.1890/080215 CrossRefGoogle Scholar
  18. Fernandez-Manjarres J, Tschanz L (2010) Assisted colonization: protect managed forests. Science (80−) 330:1318Google Scholar
  19. Folke C (2006) Resilience: the emergence of a perspective for social–ecological systems analyses. Glob Environ Change 16:253–267.  https://doi.org/10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  20. Folke et al. (2002) Resilience and Sustainable Development: Building adaptive capacity in a world of transformations. Report from the Environmental Advisory Council, Ministry of Environment, Stockholm, SwedenGoogle Scholar
  21. Folke C, Hahn T, Olsson P, Norberg J (2005) Adaptive governance of social–ecological systems. Annu Rev Environ Resour 30:441–473.  https://doi.org/10.1146/annurev.energy.30.050504.144511 CrossRefGoogle Scholar
  22. Gaudin S, Madrolles F, Richard J-B, Brusten T (2016) How to take into account climate change in forest sites handbooks? Rev Sci Tech Forêt Environ 228:49–54Google Scholar
  23. Godard O (2010) Dossier « Adaptation aux changements climatiques » – Cette ambiguë adaptation au changement climatique. Nat Sci Sociétés 18:287–297.  https://doi.org/10.1051/nss/2010036 CrossRefGoogle Scholar
  24. Gomm R, Hammersley M, Foster P (2000) Case study method. Sage Publi, LondonGoogle Scholar
  25. Gupta J, Termeer K, Klostermann J et al (2010) The Adaptive Capacity Wheel a method to assess the inherent characteristics of institutions to enable the adaptive capacity of society. Environ Sci Policy 13:459–471CrossRefGoogle Scholar
  26. Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23CrossRefGoogle Scholar
  27. Husson JP (2006) Vers des modèles forestiers plurifonctionnels. In: Galochet M (ed) La forêt, Ressource et Patrimoine (collectif). Ellipses Edition, ParisGoogle Scholar
  28. Institut National de l’Information Géographique et Forestière (2017) Le mémento: inventaire forestierGoogle Scholar
  29. Isbell F, Craven D, Connolly J et al (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574–577CrossRefGoogle Scholar
  30. Jarzebski MP, Tumilba V, Yamamoto H (2016) Application of a tri-capital community resilience framework for assessing the social–ecological system sustainability of community-based forest management in the Philippines. Sustain Sci 11:307–320.  https://doi.org/10.1007/s11625-015-0323-7 CrossRefGoogle Scholar
  31. Karnkowski W, Sahajdak A (2010) Occurence of the pinewood nematode in Portugal and Spain—threat for pine forests in Europe. Progr Plant Prot 50:1260–1264Google Scholar
  32. Lefèvre F, Boivin T, Bontemps A et al (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71:723–739CrossRefGoogle Scholar
  33. Liu J, Dietz T, Carpenter SR et al (2007) Complexity of coupled human and natural systems. Science 317:1513–1516.  https://doi.org/10.1126/science.1144004 CrossRefGoogle Scholar
  34. Loarie SR, Duffy PB, Hamilton H et al (2009) The velocity of climate change. Nature 462:1052–1055.  https://doi.org/10.1038/nature08649 CrossRefGoogle Scholar
  35. Maciver DC, Wheaton E (2005) Tomorrow’s forest: adapting to a changing climate. Clim Chang 70(1):273–282CrossRefGoogle Scholar
  36. Magnan A (2009) Proposition d’une trame de recherche pour appréhender la capacité d’adaptation au changement climatique. Vertigo 9(3)Google Scholar
  37. Magnan A (2014) De la vulnérabilité à l’adaptation au changement climatique: éléments de réflexion pour les sciences sociales. In: Monaco A, Prouzet P (dir.) Risques côtiers et adaptations des sociétés, ISTE Editions, pp 241–274Google Scholar
  38. McCarthy MA, Burgman MA (1995) Coping with uncertainty in forest wildlife planning. For Ecol Manag 74:23–36CrossRefGoogle Scholar
  39. Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151CrossRefGoogle Scholar
  40. Mola-Yudego B, Arevalo J, Díaz-Yáñez O et al (2017) Wood biomass potentials for energy in northern Europe: forest or plantations? Biomass Bioenerg 106:95–103.  https://doi.org/10.1016/j.biombioe.2017.08.021 CrossRefGoogle Scholar
  41. Moon K, Blackman D (2014) A guide to understanding social science research for natural scientists. Conserv Biol 28:1167–1177.  https://doi.org/10.1111/cobi.12326 CrossRefGoogle Scholar
  42. National Forest Inventory (2011) A new ecological and forest parting of French territories: the Sylvo-Eco Region (SER). L’Inventaire For 1–8Google Scholar
  43. Nelson R, Brown PR, Darbas T, et al (2007) The potential to map the adaptive capacity of Australian land managers for NRM policy using ABS data. CSIRO, Australian Bureau of Agriculture and Resource Economics, prepared for the National Land and Water Resources AuditGoogle Scholar
  44. Nelson R, Kokic P, Crimp S et al (2010) The vulnerability of Australian rural communities to climate variability and change: Part II—integrating impacts with adaptive capacity. Environ Sci Policy 13:18–27.  https://doi.org/10.1016/j.envsci.2009.09.007 CrossRefGoogle Scholar
  45. Nunes da Silva M, Solla A, Sampedro L et al (2015) Susceptibility to the pinewood nematode of four pine species involved in potential range expansion across Europe. Tree Physiol 35:987–999CrossRefGoogle Scholar
  46. Olsson P, Folke C, Hahn T (2004) Social–ecological transformation for ecosystem management: the development of adaptive co-management of a wetland landscape in southern Sweden. Ecol Soc 9(4):2CrossRefGoogle Scholar
  47. Olsson P, Galaz V, Boonstra WJ (2014) Sustainability transformations: a resilience perspective. Ecol Soc 19(4):1CrossRefGoogle Scholar
  48. Ostrom E (1990) Governing the commons: the evolution of institutions for collective action. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  49. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422.  https://doi.org/10.1126/science.1172133 CrossRefGoogle Scholar
  50. Pahl-Wostl C (2009) A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. Glob Environ Change 19:354–365.  https://doi.org/10.1016/j.gloenvcha.2009.06.001 CrossRefGoogle Scholar
  51. Papillon P (2014) Les forêts périurbaines: des espaces récréatifs à la fonction prophylactique. Le cas des aires urbaines d’Alençon, de Blois et du Mans. Dodier R (Dir), ParisGoogle Scholar
  52. Percheval J (2014) Le développement de la filière bois-énergie en région Provence-Alpes-Côte-d'Azur. Report from the Regional Environmental Development and Housing Direction for the Ministry of Agriculture and Forest, ParisGoogle Scholar
  53. Pottier A (2014) Le massif forestier des Landes de Gascogne, un patrimoine naturel? Le regard des gestionnaires. Ann Georgr 698:1016–1038CrossRefGoogle Scholar
  54. Ravera F, Tarrason D, Simelton E (2011) Envisioning adaptive strategies to change: participatory scenarios for agropastoral semiarid systems in Nicaragua. Ecol Soc 16:art20CrossRefGoogle Scholar
  55. Schultz C (2008) Responding to scientific uncertainty in US forest policy. Environ Sci Policy 11:253–271CrossRefGoogle Scholar
  56. Schultz L, Folke C, Österblom H, Olsson P (2015) Adaptive governance, ecosystem management, and natural capital. Proc Natl Acad Sci 112:7369–7374.  https://doi.org/10.1073/pnas.1406493112 CrossRefGoogle Scholar
  57. Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Glob Environ Change 16:282–292.  https://doi.org/10.1016/j.gloenvcha.2006.03.008 CrossRefGoogle Scholar
  58. Szreter S, Woolcock M (2004) Health by association? Social capital, social theory, and the political economy of public health. Int J Epidemiol 33:650–667CrossRefGoogle Scholar
  59. Thoening JC (1973) L'ére des technocrates, les cas des Ponts et Chaussées. Les Editions d'Organisation, Collection Sociologie des Organisations, ParisGoogle Scholar
  60. Thompson I, Mackey B, McNulty S, Mosseler A (2009) Forest Resilience, Biodiversity, and Climate Change. A synthesis of the biodiversity/resilience/stability relationship in forest ecosystems, MontrealGoogle Scholar
  61. Tilman D, Reich PB, Knops JMH (2005) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632CrossRefGoogle Scholar
  62. Tompkins EL, Adger WN (2004) Does adaptive management of natural resources enhance resilience to climate change? Ecol Soc 9(2):10CrossRefGoogle Scholar
  63. Walker B, Holling CS, Carpenter SR, Kinzig A (2004) Resilience, adaptability and transformability in social–ecological systems. Ecol Soc 9(2):5CrossRefGoogle Scholar
  64. Walker B, Gunderson L, Kinzig A et al (2006) A handful of heuristics and some propositions for understanding resilience in social–ecological systems. Ecol Soc 11(1):13CrossRefGoogle Scholar
  65. Wang T, Campbell EM, O’Neill GA, Aitken SN (2012) Projecting future distributions of ecosystem climate niches: uncertainties and management applications. For Ecol Manage 279:128–140.  https://doi.org/10.1016/j.foreco.2012.05.034 CrossRefGoogle Scholar
  66. Williamson T, Hesseln H, Johnston M (2012) Adaptive capacity deficits and adaptive capacity of economic systems in climate change vulnerability assessment. For Policy Econ 24:48–54.  https://doi.org/10.1016/j.forpol.2012.09.006 CrossRefGoogle Scholar
  67. Wilson G (2010) Multifunctional “quality” and rural community resilience. Trans Inst Br Geogr 35:364–381CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire Ecologie Systématique Evolution, UMR 8079, CNRS, AgroParisTechUniversité Paris-Sud, Université Paris-SaclayOrsayFrance
  2. 2.Geography DepartmentUniversité Panthéon-SorbonneParisFrance
  3. 3.INRA, UMR 1202Université de BordeauxPessacFrance
  4. 4.Laboratoire ESE, Bat 360Université Paris-SudOrsay CedexFrance

Personalised recommendations