Sustainability of small-scale social-ecological systems in arid environments: trade-off and synergies of global and regional changes

  • Alicia TenzaEmail author
  • Julia Martínez-Fernández
  • Irene Pérez-Ibarra
  • Andrés Giménez
Original Article
Part of the following topical collections:
  1. Concepts, Methodology, and Knowledge Management for Sustainability Science


The sustainability of small-scale social-ecological systems (SESs) in drylands is challenged by external socio-economic and environmental drivers of change that interact both with one another and with endogenous drivers unexpectedly and in complex ways. Understanding the way large-scale changes interact with endogenous drivers and affect the sustainability of drylands is, thus, crucial for policy insights that aim to foster the stewardship of drylands in desirable states. By the system dynamics approach, we developed a dynamic simulation model to: (1) quantitatively analyse the relative weight of each driver type on the local dynamics of the SES of the oasis of Comondú (Baja California Sur, Mexico), which has witnessed sharp depopulation in recent decades; (2) identify and quantify cross-scale interactions; (3) discuss the local sustainability implications. Based on local knowledge, our model successfully simulated the SES’ historical behaviour. Our simulation showed that external drivers linked to global drivers, especially climatic drivers, have markedly influenced the local dynamics. However, endogenous factors (e.g. local economy, employment) have proven relevant in shaping this SES’ sustainability outcomes. The reinforcing relationship between the effects of the variability of rainfall and the volatility of market prices warns about the system’s vulnerability to a double exposure: climate change and globalisation. Our study demonstrates the suitability of dynamic simulation models to address key issues for sustainability science, like studying the long-term dynamics of SESs, interactions between regions, and place-based and problem-oriented approaches to solve real-world problems.


Cross-scale interactions Drivers of change Dynamic model Oasis System dynamics Vulnerability 



We thank the residents of Comondú for their participation in this research; all the RIDISOS members for their collaboration; and the support of several government agencies of Mexico by providing official data sets. Pedro Segura supervised the management of economic data. Aurora Breceda contributed to improving the discussion of this paper. Mario Alberto Victorio Serrano developed the location maps. Antonina Ivanova, Manuel González de Molina and Jacopo A. Baggio reviewed the modelling of economic indicators. A.T. is the recipient of the doctoral fellowship of the Generalitat Valenciana (BFPI/2009/085); the fellowship abroad of AECID (2010–2011); and the research stay Grant at CIBNOR (2014–2016), which was funded by the Secretaría de Relaciones Exteriores of Mexico, and Santander Bank. The research project was funded by Consejo Nacional de Ciencia y Technología (CONACYT Grant CB-2008-01/98484). The preparation of this article is supported by SEMARNAT-CONACYT-2014-01 (Project 249464).

Supplementary material

11625_2018_646_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1248 kb)


  1. Acosta-Naranjo R (2002) Los entramados de la diversidad. Antropología Social de la Dehesa. Colección raíces nº16, Diputación de Badajoz, BadajozGoogle Scholar
  2. Adhikari B (2013) Poverty reduction through promoting alternative livelihoods: implications for marginal drylands. J Int Dev 25:947–967. CrossRefGoogle Scholar
  3. Alexander P (1977) Sea tenure in southern Sri Lanka. Ethnology 16:231–251. CrossRefGoogle Scholar
  4. Anadón JD, Giménez A, Ballestar R, Pérez I (2009) Evaluation of local ecological knowledge as a method for collecting extensive data on animal abundance. Conserv Biol 23:617–625. CrossRefGoogle Scholar
  5. Arriaga L, Rodríguez-Estrella R (eds) (1997) Los Oasis de la Península de Baja California. SIMAC y CIB, La PazGoogle Scholar
  6. Ascough JC II, Maier HR, Ravalico JK, Strudley MW (2008) Future research challenges for incorporation of uncertainty in environmental and ecological decision-making. Ecol Model 219:383–399. CrossRefGoogle Scholar
  7. Banos-González I, Martínez-Fernández J, Esteve MA (2016) Using dynamic sustainability indicators to assess environmental policy measures in biosphere reserves. Ecol Ind 67:565–576. CrossRefGoogle Scholar
  8. Barlas Y (1989) Multiple tests for validation of system dynamics type of simulation models. Eur J Oper Res 42:59–87. CrossRefGoogle Scholar
  9. Barlas Y (1996) Formal aspects of model validity and validation in system dynamics. Syst Dyn Rev 12:183–210.;2-4 CrossRefGoogle Scholar
  10. Bennett NJ, Whitty TS, Finkbeiner E, Pittman J, Bassett H, Stefan Gelcich S, Allison EH (2018) Environmental stewardship: a conceptual review and analytical framework. Environ Manag 61:597–614. CrossRefGoogle Scholar
  11. Bueno N, Basurto X (2009) Resilience and collapse of artisanal fisheries: a system dynamics analysis of a shellfish fishery in the Gulf of California, Mexico. Sustain Sci 4:139–149. CrossRefGoogle Scholar
  12. Bunce M, Mee L, Rodwell LD, Gibb R (2009) Collapse and recovery in a remote small island—a tale of adaptive cycles or downward spirals? Glob Environ Change 19:213–226. CrossRefGoogle Scholar
  13. Cariño M, Monforte M (2008) Del saqueo a la conservación. Historia ambiental contemporánea de Baja California Sur, 1940-2003. Instituto Nacional de Ecología, MexicoGoogle Scholar
  14. Carpenter SR, Folke C, Norström A, Olsson O, Schultz L, Agarwal B, Balvanera P, Campbell B, Castilla JC, Cramer W, DeFries R, Eyzaguirre P, Hughes TP, Polasky S, Sanusi Z, Scholes R, Spierenburg M (2012) Program on ecosystem change and society: an international research strategy for integrated social-ecological systems. Curr Opin Environ Sustain 4:134–138. CrossRefGoogle Scholar
  15. Challies E, Newig J, Lenschow A (2014) What role for social-ecological systems research in governing global teleconnections? Glob Environ Change 27:32–40. CrossRefGoogle Scholar
  16. Chapin FS III, Carpenter SR, Kofinas GP, Folke C, Abel N, Clark WC, Olsson P, Stafford Smith DM, Walker B, Young OR, Berkes F, Biggs R, Grove JM, Naylor RL, Pinkerton E, Steffen W, Swanson FJ (2010) Ecosystem stewardship: sustainability strategies for a rapidly changing planet. Trends Ecol Evol 25:241–249. CrossRefGoogle Scholar
  17. Collste D, Pedercini M, Cornell SE (2017) Policy coherence to achieve the SDGs: using integrated simulation models to assess effective policies. Sustain Sci 12:921–931. CrossRefGoogle Scholar
  18. Conway FJ (2013) Desarticulación de la sociedad oasiana (1947–2010). In: Cariño M, Breceda A, Ortega A, Castorena L (eds) Evocando el edén. Conocimiento, valoración y problemática del Oasis de Los Comondú. Icaria editorial, Barcelona, pp 317–338Google Scholar
  19. de Grenade R, Nabhan GP (2013) Baja California peninsula oases: an agro-biodiversity of isolation and integration. Appl Geogr 41:24–35. CrossRefGoogle Scholar
  20. Dearing JA, Braimoh AK, Reenberg A, Turner BL, van der Leeuw S (2010) Complex land systems: the need for long time perspectives to assess their future. Ecol Soc 15:#21CrossRefGoogle Scholar
  21. Eakin H (2005) Institutional change, climate risk, and rural vulnerability: cases from central mexico. World Dev 33:1923–1938. CrossRefGoogle Scholar
  22. Eakin H, Winkels A, Sendzimir J (2009) Nested vulnerability: cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environ Sci Policy 12:398–412. CrossRefGoogle Scholar
  23. Easdale MH, Domptail SE (2014) Fate can be changed! Arid rangelands in a globalizing world—a complementary co-evolutionary perspective on the current ‘desert syndrome’. J Arid Environ 100–101:52–62CrossRefGoogle Scholar
  24. FAO (2018) The linkages between migration, agriculture. Food Security and Rural Development, RomeGoogle Scholar
  25. Ford A (1990) Estimating the impact of efficiency standards on the uncertainty of the Northwest electric system. Oper Res 38:580–597. CrossRefGoogle Scholar
  26. Gamso J, Yuldashev F (2018) Does rural development aid reduce international migration? World Dev 110:268–282. CrossRefGoogle Scholar
  27. Haeffner M, Baggio JA, Galvin K (2018) Investigating environmental migration and other rural drought adaptation strategies in Baja California Sur, Mexico. Reg Environ Change 18:1495–1507. CrossRefGoogle Scholar
  28. Hanspach J, Hartel T, Milcu A, Mikulcak F, Dorresteijn I, Loos J, von Wehrden H, Kuemmerle T, Abson D, Kovács-Hostyánszki A, Báldi A, Fischer J (2014) A holistic approach to studying social-ecological systems and its application to southern Transylvania. Ecol Soc 19:32. CrossRefGoogle Scholar
  29. IFAD (2016) The Drylands Advantage. Protecting the environment, empowering people. International Fund for Agricultural Development, RomeGoogle Scholar
  30. Instituto Nacional de Estadística y Geografía (INEGI) (2011) Marco Geoestadístico Nacional: Localidades geoestadísticas, archivo histórico. Accessed 20 June 2017
  31. Martínez-Fernández J, Esteve-Selma MA, Calvo-Sendín JF (2000) Environmental and socioeconomic interactions in the evolution of traditional irrigated lands: a dynamic system model. Hum Ecol 28:279–299. CrossRefGoogle Scholar
  32. Megersa B, Markemann A, Angassa A, Ogutu JO, Piepho HP, Zaráte AV (2014) Impacts of climate change and variability on cattle production in southern Ethiopia: perceptions and empirical evidence. Agric Syst 130:23–34. CrossRefGoogle Scholar
  33. Motesharrei S, Rivas J, Kalnay E (2014) Human and nature dynamics (HANDY): modeling inequality and use of resources in the collapse or sustainability of societies. Ecol Econ 101:90–102. CrossRefGoogle Scholar
  34. Nayak PK, Berkes F (2014) Linking global drivers with local and regional change: a social-ecological system approach in Chilika Lagoon, Bay of Bengal. Reg Environ Change 14:2067–2078. CrossRefGoogle Scholar
  35. O´Brien KL, Leichenko RM (2000) Double exposure: assessing the impacts of climate change within the context of economic globalization. Glob Environ Change 10:221–232. CrossRefGoogle Scholar
  36. O’Connor TG, Kiker GA (2004) Collapse of the Mapungubwe society: vulnerability of pastoralism to increasing aridity. Clim Change 66:49–66. CrossRefGoogle Scholar
  37. Oliva R (2003) Model calibration as a testing strategy for system dynamics models. Eur J Oper Res 151:552–568. CrossRefGoogle Scholar
  38. Pérez I, Tenza A, Anadón JD, Martínez-Fernández J, Pedreño A, Giménez A (2012) Exurban sprawl increases the extinction probability of a threatened tortoise due to pet collections. Ecol Model 245:19–30. CrossRefGoogle Scholar
  39. Pérez I, Janssen MA, Anderies JM (2016) Food security in the face of climate change: adaptive capacity of small-scale social-ecological systems to environmental variability. Glob Environ Change 40:82–91. CrossRefGoogle Scholar
  40. Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D’Amore M (1992) Environmental and economic costs of pesticide use. Bioscience 42:750–760. CrossRefGoogle Scholar
  41. Roberts N, Andersen DF, Deal RM, Garet MS, Shaffer WA (1983) Introduction to computer simulation: the systems dynamics approach. Addison-Wesley, ReadingGoogle Scholar
  42. Sanga GJ, Mungatana ED (2016) Integrating ecology and economics in understanding land-use changes externalities internalization in water catchments. Ecol Econ 121:28–39. CrossRefGoogle Scholar
  43. Silva JA, Eriksen S, Ombe ZA (2010) Double exposure in Mozambique´s Limpopo River Basin. Geograph J 176:6–24. CrossRefGoogle Scholar
  44. Solecki W, Oliveri C (2004) Downscaling climate change scenarios in an urban land use change model. J Environ Manag 72:105–115. CrossRefGoogle Scholar
  45. Srivastava P, Singh R, Tripathi R, Raghubanshi AS (2016) An urgent need for sustainable thinking in agriculture—an Indian scenario. Ecol Ind 67:611–622. CrossRefGoogle Scholar
  46. Sterman JD (1984) Appropriate summary statistics for evaluating the historical fit of system dynamics models. Dynamica 10:51–66Google Scholar
  47. Taylor TR, Ford DN, Ford A (2010) Improving model understanding using statistical screening. Syst Dyn Rev 26:73–87. CrossRefGoogle Scholar
  48. Tenza A, Pérez I, Martínez-Fernández J, Giménez A (2017) Understanding the decline and resilience loss of a long-lived social-ecological system: insights from system dynamics. Ecol Soc 22:15. CrossRefGoogle Scholar
  49. van der Leeuw S, Wiek A, Harlow J, Buizer J (2012) How much time do we have? Urgency and rhetoric in sustainability science. Sustain Sci 7:115–120. CrossRefGoogle Scholar
  50. Vang Rasmussen L, Coolsaet B, Martin A, Mertz O, Pascual U, Corbera E, Dawson N, Fisher JA, Franks P, Ryan CM (2018) Social-ecological outcomes of agricultural intensification. Nat Sustain 1:275–282. CrossRefGoogle Scholar
  51. Vennix JAM (1996) Group model building. Facilitating team learning using system dynamics. Wiley, ChichesterGoogle Scholar
  52. Whitfield S, Reed MS (2012) Participatory environmental assessment in drylands: introducing a new approach. J Arid Environ 77:1–10. CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biología Aplicada, EcologíaUniversidad Miguel HernándezElcheSpain
  2. 2.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  3. 3.Fundación Nueva Cultura del AguaZaragozaSpain
  4. 4.School of Social WorkColumbia UniversityNew YorkUSA

Personalised recommendations