Datenschutz und Datensicherheit - DuD

, Volume 43, Issue 12, pp 760–766 | Cite as

Daniel Braun, Elena Scepankova, Patrick Holl, Florian Matthes

The Potential of Customer-Centered LegalTech

Consumer Protection in the Digital Era
  • Daniel BraunEmail author
  • Elena Scepankova
  • Patrick Holl
  • Florian Matthes


New technologies and tools, often summarised under the term ‘‘LegalTech,,, are changing the way in which legal professionals work. The digital transformation has changed many aspects of our daily life and democratised access to knowledge and services. In the legal domain, however, consumers rarely benefit from digitisation. On the contrary, they are often overpowered by big corporations and their well-equipped legal departments. In this paper, we outline how LegalTech can be used to empower consumers in the digital era, by building tools to support consumers and those who protect them. In order to show the potential of customer-centred LegalTech, we present two prototypes which semantically analyse, assess, and summarise Terms of Services from German web shops.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Möllers, Frederik; Hessel, Stefan: Das Sicherheitsgutachten zum besonderen elektronischen Anwaltspostfach (beA). Computer und Recht, 34(7):413–417, 2018.CrossRefGoogle Scholar
  2. 2.
    Zerres, Thomas: Principles of the German Law on Standard Terms of Contract. Jurawelt, 2014.Google Scholar
  3. 3.
    Bakos, Yannis; Marotta-Wurgler, Florencia; Trossen, David R: Does anyone read the fine print? Consumer attention to standard-form contracts. The Journal of Legal Studies 43(1):1–35, 2014.CrossRefGoogle Scholar
  4. 4.
    JURIS Rechtsinformationsdatenbank., 2017. Last accessed: 2017-10-29.
  5. 5.
    Binns, Reuben; Matthews, David: Community structure for efficient information flowin’ToS; DR’, a social machine for parsing legalese. In: Proceedings of the 23rd International Conference on World Wide Web. ACM, pp. 881–884, 2014.Google Scholar
  6. 6.
    Lippi, Marco; Palka, Przemyslaw; Contissa, Giuseppe; Lagioia, Francesca; Micklitz, Hans-Wolfgang; Panagis, Yannis; Sartor, Giovanni; Torroni, Paolo: Automated Detection of Unfair Clauses in Online Consumer Contracts. In: JURIX. pp. 145–154, 2017.Google Scholar
  7. 7.
    McCallum, Andrew: Information extraction: Distilling structured data from unstructured text. Queue, 3(9):48–57, 2005.CrossRefGoogle Scholar
  8. 8.
    Grabmair, Matthias; Ashley, Kevin D; Chen, Ran; Sureshkumar, Preethi; Wang, Chen; Nyberg, Eric; Walker, Vern R: Introducing LUIMA: an experiment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system and tools. In: Proceedings of the 15th International Conference on Artificial Intelligence and Law. ACM, pp. 69–78,.2015.Google Scholar
  9. 9.
    Francesconi, Enrico; Montemagni, Simonetta; Peters, Wim; Tiscornia, Daniela: Semantic processing of legal texts: Where the language of law meets the law of language, volume-6036. Springer, 2010.Google Scholar
  10. 10.
    Shulayeva, Olga; Siddharthan, Advaith; Wyner, Adam: Recognizing cited facts and principles in legal judgements. Artificial Intelligence and Law, 25(1):107–126, 2017.CrossRefGoogle Scholar
  11. 11.
    Walter, Stephan; Pinkal, Manfred: Automatic extraction of definitions from German court decisions. In: Proceedings of the workshop on information extraction beyond the document. Association for Computational Linguistics, pp. 20–28, 2006.Google Scholar
  12. 12.
    Waltl, B.; Landthaler, J.; Scepankova, E.; Matthes, F.; Geiger, T.; Stocker, C.; Schneider,C.: Automated extraction of semantic information from german legal documents. In: IRIS: Internationales Rechtsinformatik Symposium. 2017.Google Scholar
  13. 13.
    Bhatia, Vijay K: Simplification v. easification-the case of legal texts. Applied linguistics,4:42, 1983.CrossRefGoogle Scholar
  14. 14.
    Collantes, Miguel; Hipe, Maureen; Sorilla, Juan Lorenzo; Tolentino, Laurenz; Samson,Briane: Simpatico: A Text Simplification System for Senate and House Bills. In: Proceedings of the 11th National Natural Language Processing Research Symposium, pp. 26–32, 2015.Google Scholar
  15. 15.
    Braun, Daniel; Scepankova, Elena; Holl, Patrick; Matthes, Florian: SaToS: Assessing and Summarising Terms of Services from German Webshops. In: Proceedings of the 10th International Conference on Natural Language Generation. Association for Computational Linguistics, Santiago de Compostela, Spain, pp. 223–227, 2017.Google Scholar
  16. 16.
    Oehler, Andreas: Zur ganzheitlichen Konzeption des Verbraucherschutzes – eine ökonomische Perspektive. Verbraucher und Recht, 21(8):294–300, 2006.Google Scholar
  17. 17.
    Tamm, Marina: Verbraucherschutzrecht: Europäisierung und Materialisierung des deutschen Zivilrechts und die Herausbildung eines Verbraucherschutzprinzips. Mohr Siebeck, 2011.Google Scholar
  18. 18.
    Reichardt, Vanessa: Der Verbraucher und seine variable Rolle im Wirtschaftsverkehr. Duncker & Humblot, 2008.Google Scholar
  19. 19.
    Braun, Daniel; Scepankova, Elena; Holl, Patrick; Matthes, Florian: Customer-centered LegalTech: Automated Analysis of Standard Form Contracts. In: Tagungsband Internationales Rechtsinformatik Symposium (IRIS) 2018. Editions Weblaw, pp. 627–634, 2018.Google Scholar
  20. 20.
    Gatt, Albert; Reiter, Ehud: SimpleNLG: A realisation engine for practical applications.In: Proceedings of the 12th European Workshop on Natural Language Generation (ENLG2009). pp. 90–93, 2009.Google Scholar
  21. 21.
    Bollmann, Marcel: Adapting simplenlg to german. In: Proceedings of the 13th European Workshop on Natural Language Generation. pp. 133–138, 2011.Google Scholar
  22. 22.
    Malaga, Ross A: Worst practices in search engine optimization. Communications of the ACM, 51(12):147–150, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2019

Authors and Affiliations

  • Daniel Braun
    • 1
    Email author
  • Elena Scepankova
    • 1
  • Patrick Holl
    • 1
  • Florian Matthes
    • 1
  1. 1.MünchenDeutschland

Personalised recommendations