Effect of renal denervation procedure on left ventricular mass, myocardial strain and diastolic function by CMR on a 12-month follow-up

  • Enver TahirEmail author
  • Andreas Koops
  • Malte L. Warncke
  • Jitka Starekova
  • Johannes T. Neumann
  • Christoph Waldeyer
  • Maxim Avanesov
  • Gunnar K. Lund
  • Roland Fischer
  • Gerhard Adam
  • Stefan Blankenberg
  • Ulrich O. Wenzel
  • Fabian J. Brunner
Original Article



To investigate the effects of renal denervation (RDN) on left ventricular (LV) mass, myocardial strain and diastolic function in patients with treatment-resistant arterial hypertension by cardiac magnet resonance imaging on a 12-month follow-up.

Materials and methods

Sixteen patients (38% female) were examined before and 12 months after RDN. LV morphology and strain were analyzed. Diastolic function was determined by early (EPFR) and atrial peak filling rates (APFR) derived from differential volume–time-curve analysis. Clinical visits included 24-h ambulant blood pressure monitoring (ABPM).


Twelve months after RDN LV mass decreased from 80 ± 21 g/m2 to 74 ± 20 g/m2 (P < 0.05). Global radial (35 ± 12% vs. 41 ± 10%, P < 0.05) and longitudinal strain improved (− 15 ± 4% vs. − 17 ± 3%, P < 0.05). Global circumferential strain (− 16 ± 5% vs. − 18 ± 4%, P = 0.12) remained unchanged. The parameter of diastolic LV function PFRR (EPFR/APFR) improved following RDN (0.9 ± 0.4 vs. 1.1 ± 0.5, P < 0.05). Individual changes of LV mass were associated with an increase of EPFR (r = − 0.54, P < 0.05) and a reduction of APFR by trend (r = 0.45, P = 0.08). Systolic ABPM showed a decrease by trend (152 mmHg vs. 148 mmHg, P = 0.08).


After RDN we observed a reduction of LV mass, improvement of global strain and diastolic function.


Renal denervation Arterial hypertension Left ventricular hypertrophy Myocardial strain Diastolic heart failure 



Ambulant blood pressure monitoring


Atrial peak filling rate


Body surface area


Body mass index


Cardiac magnetic resonance


Ejection fraction


Early peak filling rate


Feature-tracking cardiac magnetic resonance


Left ventricle/left ventricular


Left ventricular hypertrophy


N-terminal pro-brain natriuretic peptide


Peak filling rate ratio


Right ventricle



We thank Christiane Brodersen for the technical assistance.

Compliance with ethical standards

Ethical statement

All procedures were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments.

Conflict of interest

The authors report no conflicts of interest.

Supplementary material

11604_2019_854_MOESM1_ESM.jpg (462 kb)
Supplemental Figure E1: Patient flowchart. (JPG 461 kb)
11604_2019_854_MOESM2_ESM.docx (36 kb)
Supplemental Table E1: Demographics and drug therapy of patients with a baseline CMR only (Group 1, N=30) compared to patients with baseline and 12-month follow-up CMR (Group 2, N=16). (DOCX 36 kb)
11604_2019_854_MOESM3_ESM.docx (34 kb)
Supplemental Table E2: Baseline comparison of blood pressure and laboratory parameters of patients with a baseline CMR only (Group 1, N=30) and patients with baseline and 12-month follow-up CMR (Group 2, N=16). (DOCX 34 kb)
11604_2019_854_MOESM4_ESM.docx (36 kb)
Supplemental Table E3: Baseline CMR analysis of patients with a baseline CMR only (Group 1, N=30) compared to patients with baseline and 12-month follow-up CMR (Group 2, N=16). (DOCX 35 kb)


  1. 1.
    GBD 2013 Risk Factors Collaborators, Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323. Scholar
  2. 2.
    Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357. Scholar
  3. 3.
    Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–622.CrossRefGoogle Scholar
  4. 4.
    Okin PM, Oikarinen L, Viitasalo M, et al. Serial assessment of the electrocardiographic strain pattern for prediction of new-onset heart failure during antihypertensive treatment: the LIFE study. Eur J Heart Fail. 2011;13(4):384–91. Scholar
  5. 5.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6. Scholar
  6. 6.
    Bombelli M, Facchetti R, Carugo S, et al. Left ventricular hypertrophy increases cardiovascular risk independently of in-office and out-of-office blood pressure values. J Hypertens. 2009;27(12):2458–64. Scholar
  7. 7.
    Muiesan ML, Salvetti M, Rizzoni D, Castellano M, Donato F, Agabiti-Rosei E. Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment. J Hypertens. 1995;13(10):1091–5.CrossRefGoogle Scholar
  8. 8.
    Koren MJ, Ulin RJ, Koren AT, Laragh JH, Devereux RB. Left ventricular mass change during treatment and outcome in patients with essential hypertension. Am J Hypertens. 2002;15(12):1021–8.CrossRefGoogle Scholar
  9. 9.
    Okin PM, Devereux RB, Jern S, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292(19):2343–9. Scholar
  10. 10.
    Bhatt DL, Kandzari DE, O'Neill WW, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. Scholar
  11. 11.
    Lüscher TF, Mahfoud F. Renal nerve ablation after SYMPLICITY HTN-3: confused at the higher level? Eur Heart J. 2014;35(26):1706–11. Scholar
  12. 12.
    Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390(10108):2160–70. Scholar
  13. 13.
    Davis MI, Filion KB, Zhang D, et al. Effectiveness of renal denervation therapy for resistant hypertension: a systematic review and meta-analysis. J Am Coll Cardiol. 2013;62(3):231–41. Scholar
  14. 14.
    Lu D, Wang K, Liu Q, Wang S, Zhang Q, Shan Q. Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol. 2016;105(8):648–56. Scholar
  15. 15.
    de Sousa Almeida M, de Araújo Gonçalves P, Branco P, et al. Impact of renal sympathetic denervation on left ventricular structure and function at 1-year follow-up. PLoS ONE. 2016;11(3):e0149855. (Joles JA, ed).CrossRefGoogle Scholar
  16. 16.
    Tsioufis C, Papademetriou V, Dimitriadis K, et al. Long-term effects of multielectrode renal denervation on cardiac adaptations in resistant hypertensive patients with left ventricular hypertrophy. J Hum Hypertens. 2016;30(11):714–9. Scholar
  17. 17.
    Palionis D, Berukstis A, Misonis N, et al. Could careful patient selection for renal denervation warrant a positive effect on arterial stiffness and left ventricular mass reduction? Acta Cardiol. 2016;71(2):173–83. Scholar
  18. 18.
    McLellan AJA, Schlaich MP, Taylor AJ, et al. Reverse cardiac remodeling after renal denervation: atrial electrophysiologic and structural changes associated with blood pressure lowering. Heart Rhythm. 2015;12(5):982–90. Scholar
  19. 19.
    Doltra A, Messroghli D, Stawowy P, et al. Potential reduction of interstitial myocardial fibrosis with renal denervation. J Am Heart Assoc. 2014;3(6):e001353. Scholar
  20. 20.
    Mahfoud F, Urban D, Teller D, et al. Effect of renal denervation on left ventricular mass and function in patients with resistant hypertension: data from a multi-centre cardiovascular magnetic resonance imaging trial. Eur Heart J. 2014;35(33):2224–31. Scholar
  21. 21.
    Verloop WL, Vink EE, Spiering W, et al. Effects of renal denervation on end organ damage in hypertensive patients. Eur J Prev Cardiol. 2015;22(5):558–67. Scholar
  22. 22.
    Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911–7. Scholar
  23. 23.
    Mahfoud F, Ukena C, Schmieder RE, et al. Ambulatory blood pressure changes after renal sympathetic denervation in patients with resistant hypertension. Circulation. 2013;128(2):132–40. Scholar
  24. 24.
    Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition. 1989;5:303–11. (discussion 312–3).Google Scholar
  25. 25.
    Schulz-Menger J, Bluemke DA, Bremerich J, et al. Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson. 2013;15(1):35. Scholar
  26. 26.
    Morais P, Marchi A, Bogaert JA, et al. Cardiovascular magnetic resonance myocardial feature tracking using a non-rigid, elastic image registration algorithm: assessment of variability in a real-life clinical setting. J Cardiovasc Magn Reson. 2017;19(1):24. Scholar
  27. 27.
    Schoennagel BP, Fischer R, Grosse R, et al. Peak filling rates assessed by CMR imaging indicate diastolic dysfunction from myocardial iron toxicity. JACC Cardiovasc Imaging. 2016;9(11):1353–4. Scholar
  28. 28.
    Nacif MS, Almeida ALC, Young AA, et al. Three-dimensional volumetric assessment of diastolic function by cardiac magnetic resonance imaging: the multi-ethnic study of atherosclerosis (MESA). Arq Bras Cardiol. 2017;108(6):552–63. Scholar
  29. 29.
    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1(8476):307–10.CrossRefGoogle Scholar
  30. 30.
    Schirmer SH, Sayed MMYA, Reil J-C, et al. Improvements in left ventricular hypertrophy and diastolic function following renal denervation: effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2014;63(18):1916–23. Scholar
  31. 31.
    Brandt MC, Mahfoud F, Reda S, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59(10):901–9. Scholar
  32. 32.
    Westenberg JJM. CMR for assessment of diastolic function. Curr Cardiovasc Imaging Rep. 2011;4(2):149–58. Scholar
  33. 33.
    Krum H, Schlaich M, Whitbourn R, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373(9671):1275–81. Scholar
  34. 34.
    Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108(5):560–5. Scholar
  35. 35.
    Donazzan L, Mahfoud F, Ewen S, et al. Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol. 2016;105(4):364–71. Scholar
  36. 36.
    Mahfoud F, Schlaich M, Kindermann I, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123(18):1940–6. Scholar
  37. 37.
    Witkowski A, Prejbisz A, Florczak E, et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58(4):559–65. Scholar
  38. 38.
    Davies JE, Manisty CH, Petraco R, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92. Scholar
  39. 39.
    Romanov A, Pokushalov E, Ponomarev D, et al. Pulmonary vein isolation with concomitant renal artery denervation is associated with reduction in both arterial blood pressure and atrial fibrillation burden: data from implantable cardiac monitor. Cardiovasc Ther. 2017;35(4):e12264. Scholar
  40. 40.
    Devereux RB, Wachtell K, Gerdts E, et al. Prognostic significance of left ventricular mass change during treatment of hypertension. JAMA. 2004;292(19):2350–6. Scholar
  41. 41.
    Georgiopoulou VV, Kalogeropoulos AP, Raggi P, Butler J. Prevention, diagnosis, and treatment of hypertensive heart disease. Cardiol Clin. 2010;28(4):675–91. Scholar

Copyright information

© Japan Radiological Society 2019

Authors and Affiliations

  • Enver Tahir
    • 1
    Email author
  • Andreas Koops
    • 1
    • 2
  • Malte L. Warncke
    • 1
  • Jitka Starekova
    • 1
  • Johannes T. Neumann
    • 3
    • 4
  • Christoph Waldeyer
    • 3
  • Maxim Avanesov
    • 1
  • Gunnar K. Lund
    • 1
  • Roland Fischer
    • 5
    • 6
  • Gerhard Adam
    • 1
  • Stefan Blankenberg
    • 3
    • 4
  • Ulrich O. Wenzel
    • 7
  • Fabian J. Brunner
    • 3
  1. 1.Department of Diagnostic and Interventional Radiology and Nuclear MedicineUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.Institute of Radiology and Interventional TherapyVivantes Auguste-Viktoria-KlinikumBerlinGermany
  3. 3.Department of General and Interventional CardiologyUniversity Heart CenterHamburgGermany
  4. 4.German Center for Cardiovascular Research (DZHK)HamburgGermany
  5. 5.Department of Pediatric Hematology and OncologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  6. 6.UCSF Benioff Children’s Hospital OaklandOaklandUSA
  7. 7.Department of Internal Medicine, NephrologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations