Japanese Journal of Radiology

, Volume 37, Issue 2, pp 154–164 | Cite as

Multidimensional analysis of clinicopathological characteristics of false-negative clinically significant prostate cancers on multiparametric MRI of the prostate in Japanese men

  • Ayumu KidoEmail author
  • Tsutomu Tamada
  • Naoki Kanomata
  • Akira Yamamoto
  • Yoshiyuki Miyaji
  • Atsushi Nagai
  • Teruki Sone
Original Article



To clarify clinicopathological features of false-negative clinically significant prostate cancer (csPC) at multiparametric prostate MRI (mpMRI).


95 patients with 139 csPC undergoing 3T mpMRI before radical prostatectomy were included. Two radiologists were independently evaluated mpMR images using PI-RADS v2. Clinicopathological findings were compared between (a) detectable and undetectable lesions using overall mpMRI criteria (o-mpMRI criteria) and (b) lesions with early enhancement effect (EEE) and lesions without EEE at DCE-MRI.


The detection rate of csPS using cutoff value of category 3 or more in PI-RADS v2 for positive lesion was 72.1% (98/136 lesions). In 38 false-negative lesions with less than PI-RADS v2 category 3, the DCE-MRI detected 14 lesions. 17 undetectable lesions on o-mpMR criteria had lower PSA and D’amico risk classification, and higher tumor apparent diffusion coefficient (ADC) than those of 118 detectable lesions (p ≤ 0.048). 89 lesions with EEE showed higher PSA, tumor size, prostatectomy GS grade, frequency of lesions with GS ≥ 4 + 3 and lower tumor ADC than those in 38 lesions without EEE (p ≤ 0.046).


Tumor detectability of csPC with PI-RADS v2 was limited compared with o-mpMRI criteria in Japanese men. Moreover, false-negative lesions on o-mpMRI criteria were characterized as small in size, low risk and low cellularity.


Magnetic resonance imaging Prostate cancer Tumor detection Prostate imaging and reporting data system version 2 Dynamic contrast-enhanced MR imaging 



This study was supported by the Kawasaki Medical School Project; Contract Grant Number: 29B-044.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interests to disclose.

Ethical statement

This single-center retrospective study was approved by the local institutional review board with a waiver of the requirement for written, informed consent.


  1. 1.
  2. 2.
    Center for Cancer Control and Information Services, National Cancer Center Japan. Projected Cancer Statistics, 2017. Accessed 28 March 2018.
  3. 3.
    Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging—reporting and data system: 2015, Version 2. Eur Urol. 2016;69:16–40.CrossRefGoogle Scholar
  4. 4.
    Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol. 2016;71:618–29.CrossRefGoogle Scholar
  5. 5.
    Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261:46–66.CrossRefGoogle Scholar
  6. 6.
    Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389:815–22.CrossRefGoogle Scholar
  7. 7.
    Auer T, Edlinger M, Bektic J, Nagele U, Herrmann T, Schäfer G, et al. Performance of PI-RADS version 1 versus version 2 regarding the relation with histopathological results. World J Urol. 2017;35:687–93.CrossRefGoogle Scholar
  8. 8.
    Greer MD, Shih JH, Lay N, Barrett T, Kayat Bittencourt L, Borofsky S, et al. Validation of the dominant sequence paradigm and role of dynamic contrast-enhanced imaging in PI-RADS version 2. Radiology. 2017;285:859–69.CrossRefGoogle Scholar
  9. 9.
    Borofsky S, George AK, Gaur S, Bernardo M, Greer MD, Mertan FV, et al. What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology. 2018;286:186–95.CrossRefGoogle Scholar
  10. 10.
    Seo JW, Shin SJ, Taik OhY, Jung DC, Cho NH, Choi YD, et al. PI-RADS version 2: detection of clinically significant cancer in patients with biopsy gleason score 6 prostate cancer. AJR Am J Roentgenol. 2017;209:W1–9.CrossRefGoogle Scholar
  11. 11.
    Rosenkrantz AB, Babb JS, Taneja SS, Ream JM. Proposed adjustments to PI-RADS version 2 decision rules: impact on prostate cancer detection. Radiology. 2017;283:119–29.CrossRefGoogle Scholar
  12. 12.
    Park SY, Jung DC, Oh YT, Cho NH, Choi YD, Rha KH, et al. Prostate cancer: PI-RADS version 2 helps preoperatively predict clinically significant cancers. Radiology. 2016;280:108–16.CrossRefGoogle Scholar
  13. 13.
    Fütterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, et al. Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol. 2015;68:1045–53.CrossRefGoogle Scholar
  14. 14.
    de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. AJR Am J Roentgenol. 2014;202:343–51.CrossRefGoogle Scholar
  15. 15.
    Le JD, Tan N, Shkolyar E, Lu DY, Kwan L, Marks LS, et al. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: correlation with whole-mount histopathology. Eur Urol. 2015;67:569–76.CrossRefGoogle Scholar
  16. 16.
    Rosenkrantz AB, Mendrinos S, Babb JS, Taneja SS. Prostate cancer foci detected on multiparametric magnetic resonance imaging are histologically distinct from those not detected. J Urol. 2012;187:2032–8.CrossRefGoogle Scholar
  17. 17.
    Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection–histopathologic correlation. Radiology. 2010;255:89–99.CrossRefGoogle Scholar
  18. 18.
    Tan N, Margolis DJ, Lu DY, King KG, Huang J, Reiter RE, et al. Characteristics of detected and missed prostate cancer foci on 3-T multiparametric MRI using an endorectal coil correlated with whole-mount thin-section histopathology. AJR Am J Roentgenol. 2015;205:W87–92.CrossRefGoogle Scholar
  19. 19.
    Truong M, Hollenberg G, Weinberg E, Messing EM, Miyamoto H, Frye TP. Impact of gleason subtype on prostate cancer detection using multiparametric magnetic resonance imaging: correlation with final histopathology. J Urol. 2017;198:316–21.CrossRefGoogle Scholar
  20. 20.
    Truong M, Feng C, Hollenberg G, Weinberg E, Messing EM, Miyamoto H, et al. A comprehensive analysis of cribriform morphology on magnetic resonance imaging/ultrasound fusion biopsy correlated with radical prostatectomy specimens. J Urol. 2018;199:106–13.CrossRefGoogle Scholar
  21. 21.
    Ohori M, Kattan M, Scardino PT, Wheeler TM. Radical prostatectomy for carcinoma of the prostate. Mod Pathol. 2004;17:349–59.CrossRefGoogle Scholar
  22. 22.
    Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, Grading Committee. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol. 2016;40:244–52.Google Scholar
  23. 23.
    Tamada T, Sone T, Kanomata N, Miyaji Y, Kido A, Jo Y, et al. Value of preoperative 3T multiparametric MRI for surgical margin status in patients with prostate cancer. J Magn Reson Imaging. 2016;44:584–93.CrossRefGoogle Scholar
  24. 24.
    Tamada T, Sone T, Higashi H, Jo Y, Yamamoto A, Kanki A, et al. Prostate cancer detection in patients with total serum prostate-specific antigen levels of 4–10 ng/mL: diagnostic efficacy of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. AJR Am J Roentgenol. 2011;197:664–70.CrossRefGoogle Scholar
  25. 25.
    Radtke JP, Schwab C, Wolf MB, Freitag MT, Alt CD, Kesch C, et al. Multiparametric magnetic resonance imaging (MRI) and MRI-transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. Eur Urol. 2016;70:846–53.CrossRefGoogle Scholar
  26. 26.
    Boesen L, Nørgaard N, Løgager V, Thomsen HS. Clinical outcome following low suspicion multiparametric prostate magnetic resonance imaging or benign magnetic resonance imaging guided biopsy to detect prostate cancer. J Urol. 2017;198:310–5.CrossRefGoogle Scholar
  27. 27.
    Cash H, Günzel K, Maxeiner A, Stephan C, Fischer T, Durmus T, et al. Prostate cancer detection on transrectal ultrasonography-guided random biopsy despite negative real-time magnetic resonance imaging/ultrasonography fusion-guided targeted biopsy: reasons for targeted biopsy failure. BJU Int. 2016;118:35–43.CrossRefGoogle Scholar
  28. 28.
    Tamada T, Prabhu V, Li J, Babb JS, Taneja SS, Rosenkrantz AB. Assessment of prostate cancer aggressiveness using apparent diffusion coefficient values: impact of patient race and age. Abdom Radiol (NY). 2017;42:1744–51.CrossRefGoogle Scholar
  29. 29.
    Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, Jemal A, Ferlay J, et al. Prostate cancer incidence in 43 populations worldwide: an analysis of time trends overall and by age group. Int J Cancer. 2016;138:1388–400.CrossRefGoogle Scholar
  30. 30.
    Cook LS, Goldoft M, Schwartz SM, Weiss NS. Incidence of adenocarcinoma of the prostate in Asian immigrants to the United States and their descendants. J Urol. 1999;161:152–5.CrossRefGoogle Scholar
  31. 31.
    Hsing AW, Tsao L, Devesa SS. International trends and patterns of prostate cancer incidence and mortality. Int J Cancer. 2000;85:60–7.CrossRefGoogle Scholar
  32. 32.
    Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, Kraus S, et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 2009;103:883–8.CrossRefGoogle Scholar
  33. 33.
    De Cobelli F, Ravelli S, Esposito A, Giganti F, Gallina A, Montorsi F, et al. Apparent diffusion coefficient value and ratio as noninvasive potential biomarkers to predict prostate cancer grading: comparison with prostate biopsy and radical prostatectomy specimen. AJR Am J Roentgenol. 2015;204:550–7.CrossRefGoogle Scholar
  34. 34.
    Tamada T, Prabhu V, Li J, Babb JS, Taneja SS, Rosenkrantz AB. Prostate cancer: diffusion-weighted MR imaging for detection and assessment of aggressiveness-comparison between conventional and kurtosis models. Radiology. 2017;284:100–8.CrossRefGoogle Scholar
  35. 35.
    Tamada T, Dani H, Taneja SS, Rosenkrantz AB. The role of whole-lesion apparent diffusion coefficient analysis for predicting outcomes of prostate cancer patients on active surveillance. Abdom Radiol (NY). 2017;42:2340–5.CrossRefGoogle Scholar
  36. 36.
    Tamada T, Kanomata N, Sone T, Jo Y, Miyaji Y, Higashi H, et al. High b value (2,000 s/mm2) diffusion-weighted magnetic resonance imaging in prostate cancer at 3 Tesla: comparison with 1,000 s/mm2 for tumor conspicuity and discrimination of aggressiveness. PLoS One. 2014;9:e96619.CrossRefGoogle Scholar
  37. 37.
    Klotz L, Zhang L, Lam A, Nam R, Mamedov A, Loblaw A. Clinical results of long-term follow-up of a large, active surveillance cohort with localized prostate cancer. J Clin Oncol. 2010;28:126–31.CrossRefGoogle Scholar
  38. 38.
    Bul M, van den Bergh RC, Zhu X, Rannikko A, Vasarainen H, Bangma CH, et al. Outcomes of initially expectantly managed patients with low or intermediate risk screen-detected localized prostate cancer. BJU Int. 2012;110:1672–7.CrossRefGoogle Scholar

Copyright information

© Japan Radiological Society 2019

Authors and Affiliations

  • Ayumu Kido
    • 1
    Email author
  • Tsutomu Tamada
    • 1
  • Naoki Kanomata
    • 2
  • Akira Yamamoto
    • 1
  • Yoshiyuki Miyaji
    • 3
  • Atsushi Nagai
    • 3
  • Teruki Sone
    • 1
  1. 1.Department of RadiologyKawasaki Medical SchoolKurashiki CityJapan
  2. 2.Department of PathologyKawasaki Medical SchoolKurashiki CityJapan
  3. 3.Department of UrologyKawasaki Medical SchoolKurashiki CityJapan

Personalised recommendations