Advertisement

Japanese Journal of Radiology

, Volume 37, Issue 2, pp 135–144 | Cite as

Can low b value diffusion weighted imaging evaluate the character of cerebrospinal fluid dynamics?

  • Toshiaki TaokaEmail author
  • Shinji Naganawa
  • Hisashi Kawai
  • Toshiki Nakane
  • Katsutoshi Murata
Original Article
  • 68 Downloads

Abstract

Purpose

We aimed to investigate whether low b value diffusion-weighted imaging (DWI) can show the change of cerebrospinal fluid (CSF) dynamics.

Materials and methods

The subjects of this retrospective study consisted of patients with ventricular dilatation (n = 50) and controls (n = 50). The CSF signal intensity on the b = 500 s/mm2 DWI was evaluated by a scoring method in the lateral, 3rd and 4th ventricles, the cerebral sulci and the Sylvian fissure. The signal void findings adjacent to the septum pellucidum were also evaluated.

Results

The CSF signal intensities were significantly less in lateral ventricle and 3rd ventricle of the ventricular dilatation subjects. In controls, the score for the signal void in the Sylvian fissure showed a significant positive correlation with age. However, other areas did not show a significant correlation with age. The appearance of the characteristic signal void adjacent to the septum pellucidum showed a significant correlation with ventricular dilatation.

Conclusion

Our current study suggests that the CSF signal intensity on the b = 500 s/mm2 DWI may show the changes in CSF dynamics and might be useful to evaluate the overlook of CSF dynamics.

Keywords

Diffusion-weighted image Low b value Ventricular dilatation Cerebrospinal fluid dynamics Septum pellucidum 

Notes

Compliance with ethical standards

Conflict of interest

One of the authors is an employee of Siemens Japan K.K.

Ethical statement

All applicable institutional and/or national guidelines for care were followed.

References

  1. 1.
    Taoka T, Masutani Y, Kawai H, Nakane T, Matsuoka K, Yasuno F, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases. Jpn J Radiol. 2017;35(4):172–8.CrossRefGoogle Scholar
  2. 2.
    Sparacia G, Cannella R, Lo Re V, Mamone G, Sakai K, Yamada K, et al. Brain-core temperature of patients before and after orthotopic liver transplantation assessed by DWI thermometry. Jpn J Radiol. 2018;36(5):324–30.CrossRefGoogle Scholar
  3. 3.
    Xu XQ, Wu CJ, Zu QQ, Lu SS, Liu XL, Gao QQ, et al. Temporal evolution of the signal intensity of hyper-acute ischemic lesions in a canine stroke model: influence of hyperintense acute reperfusion marker. Jpn J Radiol. 2017;35(4):161–7.CrossRefGoogle Scholar
  4. 4.
    Hori M, Fukunaga I, Masutani Y, Taoka T, Kamagata K, Suzuki Y, et al. Visualizing non-Gaussian diffusion: clinical application of q-space imaging and diffusional kurtosis imaging of the brain and spine. Magn Reson Med Sci. 2012;11(4):221–33.CrossRefGoogle Scholar
  5. 5.
    Kanda T, Wakabayashi Y, Zeng F, Ueno Y, Sofue K, Maeda T, et al. Imaging findings in radiation therapy complications of the central nervous system. Jpn J Radiol. 2018;36(9):519–527CrossRefGoogle Scholar
  6. 6.
    Zitouni S, Koc G, Doganay S, Saracoglu S, Gumus KZ, Ciraci S, et al. Apparent diffusion coefficient in differentiation of pediatric posterior fossa tumors. Jpn J Radiol. 2017;35(8):448–53.CrossRefGoogle Scholar
  7. 7.
    Tachibana Y, Aida N, Niwa T, Nozawa K, Kusagiri K, Mori K, et al. Analysis of multiple B-value diffusion-weighted imaging in pediatric acute encephalopathy. PLoS One. 2014;8(6):e63869.CrossRefGoogle Scholar
  8. 8.
    Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T. Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol. 2003;13(1):6–11.Google Scholar
  9. 9.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401–7.CrossRefGoogle Scholar
  10. 10.
    Fujima N, Sakashita T, Homma A, Yoshida D, Kudo K, Shirato H. Utility of a hybrid IVIM-DKI model to predict the development of distant metastasis in head and neck squamous cell carcinoma patients. Magn Reson Med Sci. 2018;17(1):21–7.CrossRefGoogle Scholar
  11. 11.
    Urushihata T, Takuwa H, Seki C, Tachibana Y, Takahashi M, Kershaw J, et al. Water diffusion in the brain of chronic hypoperfusion model mice: a study considering the effect of blood flow. Magn Reson Med Sci. 2018;17(4):318–324CrossRefGoogle Scholar
  12. 12.
    Kockum K, Lilja-Lund O, Larsson EM, Rosell M, Soderstrom L, Virhammar J, et al. The iNPH Radscale; a radiological scale for structured evaluation of idiopathic normal pressure hydrocephalus. Eur J Neurol. 2018;25(3):569–576CrossRefGoogle Scholar
  13. 13.
    Evans WA Jr. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry. 1942;47(6):931–7.CrossRefGoogle Scholar
  14. 14.
    Sasaki M, Honda S, Yuasa T, Iwamura A, Shibata E, Ohba H. Narrow CSF space at high convexity and high midline areas in idiopathic normal pressure hydrocephalus detected by axial and coronal MRI. Neuroradiology. 2008;50(2):117–22.CrossRefGoogle Scholar
  15. 15.
    Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19(7):1277–84.Google Scholar
  16. 16.
    Holodny AI, George AE, de Leon MJ, Golomb J, Kalnin AJ, Cooper PR. Focal dilation and paradoxical collapse of cortical fissures and sulci in patients with normal-pressure hydrocephalus. J Neurosurg. 1998;89(5):742–7.CrossRefGoogle Scholar
  17. 17.
    Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2014;35(12):2311–8.CrossRefGoogle Scholar
  18. 18.
    Ishii K, Kanda T, Harada A, Miyamoto N, Kawaguchi T, Shimada K, et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18(11):2678–83.CrossRefGoogle Scholar
  19. 19.
    Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RAMR. Signal abnormalities at 1.5 T in alzheimer's dementia and normal aging. Am J Neuroradiol. 1987;8(3):421–6.Google Scholar
  20. 20.
    Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5:299–314.Google Scholar
  21. 21.
    Naganawa S, Nakane T, Kawai H, Taoka T. Gd-based contrast enhancement of the perivascular spaces in the basal ganglia. Magn Reson Med Sci. 2017;16(1):61–5.CrossRefGoogle Scholar
  22. 22.
    Miyajima M, Arai H. Evaluation of the production and absorption of cerebrospinal fluid. Neurol Med Chir (Tokyo). 2015;55(8):647–56.CrossRefGoogle Scholar
  23. 23.
    Oreskovic D, Rados M, Klarica M. Role of choroid plexus in cerebrospinal fluid hydrodynamics. Neuroscience. 2017;354:69–87.CrossRefGoogle Scholar
  24. 24.
    Taoka T, Naganawa S. Gadolinium-based contrast media, cerebrospinal fluid and the glymphatic system: possible mechanisms for the deposition of gadolinium in the brain. Magn Reson Med Sci. 2018;17(2):111–9.CrossRefGoogle Scholar
  25. 25.
    Taoka T, Yamada S, Sakamoto M, Akashi T, Miyasaka T, Ochi T, et al. Accuracy for predicting adhesion between meningioma and the brain by using brain surface motion imaging: comparison between single and double acquisition methods. Neuroradiology. 2012;54(12):1313–20.CrossRefGoogle Scholar
  26. 26.
    Taoka T, Yamada S, Yamatani Y, Akashi T, Miyasaka T, Emura T, et al. Brain surface motion imaging to predict adhesions between meningiomas and the brain surface. Neuroradiology. 2010;52(11):1003–10.CrossRefGoogle Scholar
  27. 27.
    Yamada S, Miyazaki M, Kanazawa H, Higashi M, Morohoshi Y, Bluml S, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology. 2008;249(2):644–52.CrossRefGoogle Scholar
  28. 28.
    Yatsushiro S, Sunohara S, Hayashi N, Hirayama A, Matsumae M, Atsumi H, et al. Cardiac-driven pulsatile motion of intracranial cerebrospinal fluid visualized based on a correlation mapping technique. Magn Reson Med Sci. 2018;17(2):151–60.CrossRefGoogle Scholar
  29. 29.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168(2):497–505.CrossRefGoogle Scholar
  30. 30.
    Sarwar M. The septum pellucidum: normal and abnormal. AJNR Am J Neuroradiol. 1989;10(5):989–1005.Google Scholar
  31. 31.
    Kang KM, Choi SH, Kim DE, Yun TJ, Kim JH, Sohn CH, et al. Application of cardiac gating to improve the reproducibility of intravoxel incoherent motion measurements in the head and neck. Magn Reson Med Sci. 2017;16(3):190–202.CrossRefGoogle Scholar
  32. 32.
    Ohashi T, Naganawa S, Kanou M, Ikeda M. CSF pulsation artifacts on ADC maps obtained with readout-segmented EPI. Magn Reson Med Sci. 2017;16(2):123–8.CrossRefGoogle Scholar

Copyright information

© Japan Radiological Society 2018

Authors and Affiliations

  1. 1.Department of Radiology, Graduate School of MedicineNagoya UniversityNagoyaJapan
  2. 2.Siemens Japan K.K.TokyoJapan

Personalised recommendations