Advertisement

Acta Geophysica

, Volume 67, Issue 6, pp 1535–1550 | Cite as

High-resolution reflectivity inversion based on joint sparse representation

  • Zhanzhan Shi
  • Huailai ZhouEmail author
  • Yuanjun Wang
  • Cong Niu
  • Rao Huang
Research Article - Applied Geophysics
  • 32 Downloads

Abstract

High-resolution reflectivity inversion is termed as a fundamental yet essential step for the prediction of thin-bedded hydrocarbon reservoirs. However, algorithms suffer from two key issues: (1) seismic inversion is an ill-posed problem that has multiple solutions, and the results of trace-by-trace seismic inversion are quite poor in lateral continuity, and (2) algorithm stability is likely to be decreased owing to the noise and distortion associated with the acquisition and processing flows. In the current article, we formulate a new joint sparse representation through the combination with L2,1-norm misfit function, which possesses superior noise robustness, in particular in the presence of outliers. On the basis of the L2,1-norm regularization, this specific approach enforces a common sparsity profile, together with consistently lowering the multiplicity of solution. Subsequent to that, the resultant algorithm is applied to the multi-trace seismic inversion. Besides, the wedge model trial and practical applications suggest that the proposed inversion algorithm is stable, in addition to having good noise robustness and lateral continuity; moreover, the vertical resolution of λ/8 is realized under the noise and outliers interference. The logging data calibration illustrates that the proposed methodology is accurate and credible.

Keywords

Joint sparse representation L2,1-norm misfit function L2,1-norm regularization Seismic inversion Alternating direction method 

Notes

Acknowledgements

This work receives the financial support from the National Science and Technology Major Project (Grant No. 2016ZX05026-001-005) of the Ministry of Science and Technology of China. The second author (corresponding author) thanks Chuncheng Liu and Yiming Zhang of CNOOC Research Institute for the constructive discussion.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2:183–202.  https://doi.org/10.1137/080716542 CrossRefGoogle Scholar
  2. Becker S, Bobin J, Candès E (2011) NESTA: a fast and accurate first-order method for sparse recovery. SIAM J Imaging Sci 4:1–39.  https://doi.org/10.1137/090756855 CrossRefGoogle Scholar
  3. Chopra S, Castagna J, Portniaguine O (2006) Seismic resolution and thin-bed reflectivity inversion. CSEG Rec 2006:19–25Google Scholar
  4. Chen J, Huo X (2006) Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans Signal Process 54:4634–4643.  https://doi.org/10.1109/TSP.2006.881263 CrossRefGoogle Scholar
  5. Chen S, Donoho D, Saunders M (2001) Atomic decomposition by basis pursuit. SIAM Rev 43:129–159.  https://doi.org/10.1137/S003614450037906X CrossRefGoogle Scholar
  6. Chung H, Lawton D (1995) Amplitude responses of thin beds: sinusoidal approximation versus Ricker approximation. Geophysics 60:223–230.  https://doi.org/10.1190/1.1443750 CrossRefGoogle Scholar
  7. Claerbout J, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844.  https://doi.org/10.1190/1.1440378 CrossRefGoogle Scholar
  8. Cotter SF, Rao BD, Kjersti E, Kreutz-Delgado K (2005) Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans Signal Process 53:2477–2488.  https://doi.org/10.1109/TSP.2005.849172 CrossRefGoogle Scholar
  9. Deng W, Yin W, Zhang Y (2013) Group sparse optimization by alternating direction method. In: Proceedings of SPIE 8858, wavelets and sparsity XV, pp 88580R. https://doi.org/10.1117/12.2024410
  10. de Voogd N, den Rooijen H (1983) Thin-layer response and spectral bandwidth. Geophysics 48:12–18.  https://doi.org/10.1190/1.1441400 CrossRefGoogle Scholar
  11. Eldar YC, Mishali M (2009) Robust recovery of signals from a structured union of subspaces. IEEE Trans Inf Theory 55:5302–5316.  https://doi.org/10.1109/TIT.2009.2030471 CrossRefGoogle Scholar
  12. Fuchs J (2009) Fast implementation of a ℓ1–ℓ1 regularized sparse representations algorithm. In: Proceedings of 2009 IEEE international conference on acoustics, speech and signal processing. Institute of Electrical and Electronics Engineers, New York. pp 19–24. https://doi.org/10.1109/ICASSP.2009.4960337
  13. Gabay D, Mercier BA (1976) Dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput Math Appl 2:17–40.  https://doi.org/10.1016/0898-1221(76)90003-1 CrossRefGoogle Scholar
  14. He B, Yuan X (2012) On the O(1/n) convergence rate of the Douglas–Rachford alternating direction method. SIAM J Numer Anal 50:700–709.  https://doi.org/10.1137/110836936 CrossRefGoogle Scholar
  15. Jiang J, Wang Z, Chen C, Lu T (2016) L1–L1 norms for face super-resolution with mixed Gaussian-impulse noise. In: 2016 IEEE international conference on acoustics, speech and signal processing. Institute of Electrical and Electronics Engineers, New York, pp 2089–2093. https://doi.org/10.1109/ICASSP.2016.7472045
  16. Kallweit R, Wood L (1982) The limits of resolution of zero-phase wavelets. Geophysics 47:1035–1046.  https://doi.org/10.1190/1.1441367 CrossRefGoogle Scholar
  17. Kazemi N, Sacchi M (2014) Sparse multichannel blind deconvolution. Geophysics 79:V143–V152.  https://doi.org/10.1190/geo2013-0465.1 CrossRefGoogle Scholar
  18. Kazemi N, Gholami A, Sacchi MD (2016) Modified sparse multichannel blind deconvolution. In: 78th EAGE conference and exhibition. European Association of Geoscientists and Engineers, Houten. https://doi.org/10.3997/2214-4609.201601244
  19. Kobayashi K, Kim S, Kojima M (2008) Sparse second order cone programming formulations for convex optimization problems. J Oper Res Soc Jpn 51:241–264. https://doi.org/10.15807/jorsj.51.241
  20. Koefoed O, de Voogd N (1980) The linear properties of thin layers, with an application to synthetic seismograms over coal seams. Geophysics 45:1254–1268.  https://doi.org/10.1190/1.1441122 CrossRefGoogle Scholar
  21. Li F, Xie R, Song W, Zhao T, Marfurt K (2017) Optimal Lq norm regularization for sparse reflectivity inversion. In: SEG technical program expanded abstracts 2017. Society of Exploration Geophysicists, Tulsa. pp 677–681 https://doi.org/10.1190/segam2017-17666814.1
  22. Li F, Xie R, Song W, Chen H (2019) Optimal seismic reflectivity inversion: data-driven \({\ell_p}\)-loss-\({\ell_q}\)-regularization sparse regression. IEEE Geosci Remote Sens Lett 16:806–810.  https://doi.org/10.1109/LGRS.2018.2881102 CrossRefGoogle Scholar
  23. Liu J, Ji S, Ye J (2010) SLEP: sparse learning with efficient projections. Dissertation, Arizona State UniversityGoogle Scholar
  24. Liu Q, Davoine F, Yang J, Cui Y, Jin Z, Han F (2018) A fast and accurate matrix completion method based on QR decomposition and L 2,1-norm minimization. IEEE Trans Neural Netw Learn Syst 30:803–817.  https://doi.org/10.1109/TNNLS.2018.2851957 CrossRefGoogle Scholar
  25. Mallat SG, Zhifeng Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41:3397–3415.  https://doi.org/10.1109/78.258082 CrossRefGoogle Scholar
  26. Marfurt K, Kirlin R (2001) Narrow-band spectral analysis and thin-bed tuning. Geophysics 66:1274–1283.  https://doi.org/10.1190/1.1487075 CrossRefGoogle Scholar
  27. Nguyen T, Castagna J (2010) High-resolution reflectivity inversion. J Seism Explor 19:303–320Google Scholar
  28. Nie F, Huang H, Cai X, Ding CHQ (2010) Efficient and robust feature selection via joint ℓ2,1-norms minimization. In: Proceedings of the 23rd international conference on neural information processing systemsGoogle Scholar
  29. Partyka G, Gridley J, Lopez J (1999) Interpretational applications of spectral decomposition in reservoir characterization. Lead Edge 18:353–360.  https://doi.org/10.1190/1.1438295 CrossRefGoogle Scholar
  30. Puryear C, Castagna J (2006) An algorithm for calculation of bed thickness and reflection coefficients from amplitude spectrum. In: SEG technical program expanded abstracts 2006. Society of Exploration Geophysicists, Tulsa. pp 1767–1770. https://doi.org/10.1190/1.2369866
  31. Puryear C, Castagna J (2008) Layer-thickness determination and stratigraphic interpretation using spectral inversion: theory and application. Geophysics 73:R37–R48.  https://doi.org/10.1190/1.2838274 CrossRefGoogle Scholar
  32. Puryear C, Castagna J, Portniaguine O, Cobos C (2012) Constrained least-squares spectral analysis: application to seismic data. In: SEG technical program expanded abstracts 2012. Society of Exploration Geophysicists, Tulsa, pp 1–5. https://doi.org/10.1190/segam2012-0822.1
  33. Russell B (1988) Part 6—sparse–spike inversion. In: Domenico S (ed) Introduction to seismic inversion methods. Society of Exploration Geophysicists, Tulsa. pp 6-1–6-34. https://doi.org/10.1190/1.9781560802303.ch6
  34. Schuster G (2017) Chapter 1: introduction to seismic inversion. In: Sun Y (ed) Seismic inversion. Society of Exploration Geophysicists, Tulsa, pp 3–12. https://doi.org/10.1190/1.9781560803423.ch1
  35. Stojnic M, Parvaresh F, Hassibi B (2009) On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans Signal Process 57:3075–3085.  https://doi.org/10.1109/TSP.2009.2020754 CrossRefGoogle Scholar
  36. Tropp JA, Gilbert AC, Strauss MJ (2006) Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process 86:572–588.  https://doi.org/10.1016/j.sigpro.2005.05.030 CrossRefGoogle Scholar
  37. Tropp JA (2006) Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process 86:589–602.  https://doi.org/10.1016/j.sigpro.2005.05.031 CrossRefGoogle Scholar
  38. van den Berg E, Friedlander M (2008) Probing the Pareto frontier for basis pursuit solutions. SIAM J Sci Comput 31:890–912.  https://doi.org/10.1137/080714488 CrossRefGoogle Scholar
  39. van Riel P, Berkhout A (1985) Resolution in seismic trace inversion by parameter estimation. Geophysics 50:1440–1455.  https://doi.org/10.1190/1.1442012 CrossRefGoogle Scholar
  40. Wang B, Guo Z, Chen X, Lu W (2016) Nonstationary sparse-reflectivity inversion using nonconvex constraint in frequency domain. In: SEG technical program expanded abstracts 2016. Society of Exploration Geophysicists, Tulsa, pp 3741–3745 https://doi.org/10.1190/segam2016-13858493.1
  41. Wang S, Yuan S, Ma M, Zhang R, Luo C (2015) Wavelet phase estimation using ant colony optimization algorithm. J Appl Geophys 122:159–166.  https://doi.org/10.1016/j.jappgeo.2015.09.013 CrossRefGoogle Scholar
  42. Widess M (1973) How thin is a thin bed? Geophysics 38:1176–1180.  https://doi.org/10.1190/1.1440403 CrossRefGoogle Scholar
  43. Widess M (1982) Quantifying resolving power of seismic systems. Geophysics 47:1160–1173.  https://doi.org/10.1190/1.1441379 CrossRefGoogle Scholar
  44. Xiao Y, Zhu H, Wu SY (2013) Primal and dual alternating direction algorithms for ℓ1–ℓ1-norm minimization problems in compressive sensing. Comput Optim Appl 54:441–459.  https://doi.org/10.1007/s10589-012-9475-x CrossRefGoogle Scholar
  45. Yang J, Peng Y, Xu W, Dai Q (2009) Ways to sparse representation: an overview. Sci China Ser F Inf Sci 52:695–703.  https://doi.org/10.1007/s11432-009-0045-5 CrossRefGoogle Scholar
  46. Yang J, Zhang Y (2011) Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM J Sci Comput 33:250–278.  https://doi.org/10.1137/090777761 CrossRefGoogle Scholar
  47. Yin XY, Liu XJ, Zong ZY (2015) Pre-stack basis pursuit seismic inversion for brittleness of shale. Pet Science 12:618–627.  https://doi.org/10.1007/s12182-015-0056-3 CrossRefGoogle Scholar
  48. Yuan SY, Liu JZ, Zhang R, Tian N, Wang SX (2014) Seismic deconvolution via total variation regularization. In: 76th EAGE conference and exhibition. European Association of Geoscientists and Engineers, Houten. https://doi.org/10.3997/2214-4609.20141594
  49. Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81:V199–V212.  https://doi.org/10.1190/geo2015-0247.1 CrossRefGoogle Scholar
  50. Yuan S, Wang S, Ma M, Ji Y, Deng L (2017) Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote Sens 55:6182–6194.  https://doi.org/10.1109/TGRS.2017.2722223 CrossRefGoogle Scholar
  51. Yuan S, Wang S, Luo C, Wang T (2018) Inversion-Based 3-D seismic denoising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci Remote Sens Lett 15:1682–1686.  https://doi.org/10.1109/LGRS.2018.2854929 CrossRefGoogle Scholar
  52. Zhang F, Dai R, Liu H (2014) Seismic inversion based on L1-norm misfit function and total variation regularization. J Appl Geophys 109:111–118.  https://doi.org/10.1016/j.jappgeo.2014.07.024 CrossRefGoogle Scholar
  53. Zhang R, Castagna J (2011) Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76:R147–R158.  https://doi.org/10.1190/geo2011-0103.1 CrossRefGoogle Scholar
  54. Zhang R, Mrinal KS, Sanjay S (2013) Multi-trace basis pursuit inversion with spatial regularization. J Geophys Eng 10:035012.  https://doi.org/10.1088/1742-2132/10/3/035012 CrossRefGoogle Scholar
  55. Zhang Z, Xu Y, Yang J, Li X, Zhang D (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530.  https://doi.org/10.1109/ACCESS.2015.2430359 CrossRefGoogle Scholar
  56. Zhang Z, Li F, Zhao M, Zhang L, Yan S (2017) Robust neighborhood preserving projection by nuclear/L 2,1-norm regularization for image feature extraction. IEEE Trans Image Process 26:1607–1622.  https://doi.org/10.1109/TIP.2017.2654163 CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Authors and Affiliations

  • Zhanzhan Shi
    • 1
    • 2
  • Huailai Zhou
    • 1
    Email author
  • Yuanjun Wang
    • 1
    • 3
  • Cong Niu
    • 4
  • Rao Huang
    • 4
  1. 1.College of GeophysicsChengdu University of TechnologyChengduChina
  2. 2.Engineering and Technical CollegeChengdu University of TechnologyLeshanChina
  3. 3.School of EducationChina West Normal UniversityNanchongChina
  4. 4.CNOOC Research InstituteBeijingChina

Personalised recommendations