Advertisement

Acta Geophysica

, Volume 67, Issue 2, pp 621–649 | Cite as

The water resources of tropical West Africa: problems, progress, and prospects

  • Christopher E. NdehedeheEmail author
Review Article - Hydrology

Abstract

West Africa plays key roles in global climate and shows one of the strongest variations in hydro-climatic conditions. As it turns out, the region appears to be underrepresented in the existing compendium of Earth science and hydrology-focused journal papers when it comes to significant discussion on terrestrial hydrology and freshwater science. This prominent gap is largely precipitated by increasing number of constraints that include lack of considerable and robust investments in gauge measurements for meteorological and hydrological applications, poor funding of research institutions and other disincentives, among other factors. In this manuscript, the challenges and problems in large-scale terrestrial hydrology-focused investigation in West Africa are reviewed. Using a dossier of some recent contributions in the field of remote sensing hydrology, this review also highlights some of the progress in terrestrial hydrology and the opportunities that exist for hydro-geodetic research in West Africa that leverage on sustained investments in satellite geodetic missions. It is noted that West Africa is still a pristine environment for hydrology-focused research and can benefit from recent advancements in sophisticated space agency programs such as the Gravity Recovery and Climate Experiment, which undoubtedly has revolutionized terrestrial hydrology research around the world for nearly two decades. Given the poor density of gauge stations and limited ground observations, hydrological research in West Africa is expected to benefit more from independent space observations and multi-resolution data. This is because the lack of sufficient in-situ data for the parameterizations and adequate initialization of outputs from hydrological models and reanalysis data for hydrological applications results in poor representation of the West African land surface and hydrological state variables. To further improve our contemporary understanding of West Africa’s terrestrial hydrology, the continued evaluation/validation of these observations and space-borne measurements is advocated.

Keywords

Terrestrial hydrology Droughts Rainfall River discharge Climate variability 

Notes

Acknowledgements

The various agencies of government (National Oceanic and Atmospheric Administration, Center for Space Research, and National Aeronautics and Space Administration) are gratefully acknowledged for the data used to support this review paper. This synthesis contains items taken from the literature review component of the author’s unpublished PhD thesis, which was completed at Curtin University, Australia, in 2017. The comments of R W Abrams and two other anonymous reviewers, which helped improved the quality of the manuscript are gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The author declares that there is no conflict of interest.

References

  1. Agutu N, Awange J, Zerihun A, Ndehedehe C, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194:287–302.  https://doi.org/10.1016/j.rse.2017.03.041 Google Scholar
  2. Ahmed M, Sultan M, Wahr J, Yan E (2014) The use of GRACE data to monitor natural and anthropogenic induced variations in water availability across Africa. Earth Sci Rev 136:289–300.  https://doi.org/10.1016/j.earscirev.2014.05.009 Google Scholar
  3. Alcamo J, Döll, P, Kaspar F, Siebert S (1997) Global change and global scenarios of water use and availability: an application of WaterGAP1.0. Center for Environmental Systems Research (CESR), University of Kassel, Germany. https://pdfs.semanticscholar.org/a788/80a9f9952f0e04bc88c7c5699ea9c9e0fa30.pdf. Accessed 18 Aug 2016
  4. Ali A, Lebel T (2009) The Sahelian standardized rainfall index revisited. Int J Climatol 29:1705–1714.  https://doi.org/10.1002/joc.1832 Google Scholar
  5. Alley WM, Konikow LF (2015) Bringing GRACE down to earth. Groundwater 53(6):826–829.  https://doi.org/10.1111/gwat.12379 Google Scholar
  6. Allison G, Cook P, Barnett S, Walker G, Jolly I, Hughes M (1990) Land clearance and river salinisation in the western Murray Basin, Australia. J Hydrol 119(1):1–20.  https://doi.org/10.1016/0022-1694(90)90030-2 Google Scholar
  7. Alsdorf DE, Lettenmaier DP (2003) Tracking fresh water from space. Science 301(5639):1491–1494.  https://doi.org/10.1126/science.1089802 Google Scholar
  8. Alsdorf D, Birkett C, Dunne T, Melack J, Hess L (2001) Water level changes in a large Amazon lake measured with spaceborne radar interferometry and altimetry. Geophys Res Lett 28(14):2671–2674.  https://doi.org/10.1029/2001GL012962 Google Scholar
  9. Alsdorf D, Lettenmaier D, Vörösmarty C (2003) The need for global, satellite-based observations of terrestrial surface waters. Eos Trans Am Geophys Union 84(29):269–276.  https://doi.org/10.1029/2003EO290001 Google Scholar
  10. Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002.  https://doi.org/10.1029/2006RG000197 Google Scholar
  11. Alsdorf D, Han S-C, Bates P, Melack J (2010) Seasonal water storage on the amazon floodplain measured from satellites. Remote Sens Environ 114(11):2448–2456.  https://doi.org/10.1016/j.rse.2010.05.020 Google Scholar
  12. Alsdorf D, Beighley E, Laraque A, Lee H, Tshimanga R, O’Loughlin F, Mahé G, Dinga B, Moukandi G, Spencer RGM (2016) Opportunities for hydrologic research in the congo basin. Rev Geophys 54(2):378–409.  https://doi.org/10.1002/2016RG000517 Google Scholar
  13. Andam-Akorful SA, Ferreira VG, Awange JL, Forootan E, He XF (2015) Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa. Int J Climatol 35(10):3132–3145.  https://doi.org/10.1002/joc.4198 Google Scholar
  14. Andam-Akorful S, Ferreira V, Ndehedehe CE, Quaye-Ballard J (2017) An investigation into the freshwater variability in West Africa during \(1979-2010\). Int J Climatol 37(S1):333–349.  https://doi.org/10.1002/joc.5006 Google Scholar
  15. Anyadike RNC (1992) Hydrological regions of West Africa: a preliminary survey based on moisture regimes. Geogr Ann Ser A Phys Geogr 74(4):375–382.  https://doi.org/10.2307/521433 Google Scholar
  16. Awange J, Anyah R, Agola N, Forootan E, Omondi P (2013a) Potential impacts of climate and environmental change on the stored water of Lake Victoria Basin and economic implications. Water Resour Res 49(0):8160–8173Google Scholar
  17. Awange J, Forootan E, Kusche J, Kiema J, Omondi P, Heck B, Fleming K, Ohanya S, Gonçalves R (2013b) Understanding the decline of water storage across the Ramser–Lake Naivasha using satellite-based methods. Adv Water Resour 60:7–23.  https://doi.org/10.1016/j.advwatres.2013.07.002 Google Scholar
  18. Bader J, Latif M (2011) The 1983 drought in the West Sahel: a case study. Clim Dyn 36(3–4):463–472.  https://doi.org/10.1007/s00382-009-0700-y Google Scholar
  19. Balas N, Nicholson SE, Klotter D (2007) The relationship of rainfall variability in West Central Africa to sea-surface temperature fluctuations. Int J Climatol 27(10):1335–1349Google Scholar
  20. Basu M (2009) West Africa flooding affects 600,000, U.N. reports. CNN. http://edition.cnn.com/2009/WORLD/africa/09/08/west.africa.flooding/index.html. Accessed 30 Aug 2017
  21. Bekoe EO, Logah FY (2013) The impact of droughts and climate change on electricity generation in Ghana. Environ Sci 1(1):13–24Google Scholar
  22. Birkett CM (1995) The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J Geophys Res Oceans 100(C12):25179–25204.  https://doi.org/10.1029/95JC02125 Google Scholar
  23. Birkett CM (2000) Synergistic remote sensing of Lake Chad: variability of basin inundation. Remote Sens Environ 72:218–236.  https://doi.org/10.1016/S0034-4257(99)00105-4 Google Scholar
  24. Boening C, Willis JK, Landerer FW, Nerem RS, Fasullo J (2012) The 2011 La Niña: So strong, the oceans fell. Geophys Res Lett 39(19):L19602.  https://doi.org/10.1029/2012GL053055 Google Scholar
  25. Bonaccorso B, Bordi I, Cancelliere A, Rossi G, Sutera A (2003) Spatial variability of drought: an analysis of the SPI in Sicily. Water Resour Manag 17(4):273–296.  https://doi.org/10.1023/A:1024716530289 Google Scholar
  26. Boone A, Decharme B, Guichard F, Rosnay PD, Balsamo G, Belaars A, Chopin F, Orgeval T, Polcher J, Delire C, Ducharne A, Gascoin S, Grippa M, Jarlan L, Kergoat L, Mougin E, Gusev Y, Nasonova O, Harris P, Taylor C, Norgaard A, Sandholt I, Ottle C, Poccard-Leclercq I, Saux-Picart S, Xue Y (2009) The AMMA land surface model intercomparison project (ALMIP). Bull Am Meteorol Soc 90(12):1865–1880.  https://doi.org/10.1175/2009BAMS27/86.1 Google Scholar
  27. Brauman KA, Richter BD, Postel S, Malsy M, Flörke M (2016) Water depletion: an improved metric for incorporating seasonal and dry-year water scarcity into water risk assessments. Elementa, 4(83).  https://doi.org/10.12952/journal.elementa.000083
  28. Brown C, Lall U (2006) Water and economic development: the role of variability and a framework for resilience. Natl Resour Forum 30(4):306–317Google Scholar
  29. Cardoso J-F (1991) Super-symmetric decomposition of the fourth-order cumulant tensor, blind identification of more sources than sensors. http://perso.telecom-paristech.fr/~cardoso/Papers.PDF/icassp91.pdf. Accessed 15 Jan 2016
  30. Cardoso JF (1999) High-order contrasts for independent component analysis. Neural Comput 11:157–192Google Scholar
  31. Cardoso JF, Souloumiac A (1993) Blind beamforming for non-gaussian signals. IEE Proc 140(6):362–370Google Scholar
  32. Carrao H, Russo S, Sepulcre-Canto G, Barbosa P (2016) An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int J Appl Earth Obs Geoinf 48:74–84.  https://doi.org/10.1016/j.jag.2015.06.011 Google Scholar
  33. Castellazzi P, Martel R, Galloway DL, Longuevergne L, Rivera A (2016) Assessing groundwater depletion and dynamics using GRACE and InSAR: potential and limitations. Groundwater 54(6):768–780.  https://doi.org/10.1111/gwat.12453 Google Scholar
  34. Chen JL, Rodell M, Wilson CR, Famiglietti JS (2005) Low degree spherical harmonic influences on gravity recovery and climate experiment (GRACE) water storage estimates. Geophys Res Lett 32(14):L14405.  https://doi.org/10.1029/2005GL022964 Google Scholar
  35. Chen JL, Wilson CR, Tapley BD, Longuevergne L, Yang ZL, Scanlon BR (2010) Recent La Plata basin drought conditions observed by satellite gravimetry. J Geophys Res Atmos 115(D22):D22108.  https://doi.org/10.1029/2010JD014689 Google Scholar
  36. Chen T, de Jeu R, Liu Y, van der Werf G, Dolman A (2014) Using satellite based soil moisture to quantify the water driven variability in NDVI: a case study over mainland Australia. Remote Sens Environ 140:330–338.  https://doi.org/10.1016/j.rse.2013.08.022 Google Scholar
  37. Coe MT, Foley JA (2001) Human and natural impacts on the water resources of the Lake Chad basin. J Geophys Res 106(D4):3349–3356.  https://doi.org/10.1029/2000JD900587 Google Scholar
  38. Conway D, Persechino A, Ardoin-Bardin S, Hamandawana H, Dieulin C, Mahé G (2009) Rainfall and water resources variability in Sub-Saharan Africa during the twentieth century. J Hydrometeorol 10(1):41–59.  https://doi.org/10.1175/2008JHM1004.1 Google Scholar
  39. Cook KH, Vizy EK (2006) Coupled model simulations of the West African monsoon system: twentieth- and twenty-first-century simulations. J Clim 19(15):3681–3703.  https://doi.org/10.1175/JCLI3814.1 Google Scholar
  40. Corzo Perez GA, van Huijgevoort MHJ, Voß F, van Lanen HAJ (2011) On the spatio-temporal analysis of hydrological droughts from global hydrological models. Hydrol Earth Syst Sci 15(9):2963–2978.  https://doi.org/10.5194/hess-15-2963-2011 Google Scholar
  41. Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2006) Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys Res Lett 33(19):L19402.  https://doi.org/10.1029/2006GL027070 Google Scholar
  42. Dai A, Qian T, Trenberth KE, Milliman JD (2009) Changes in continental freshwater discharge from 1948 to 2004. J Clim 22(10):2773–2792.  https://doi.org/10.1175/2008JCLI2592.1 Google Scholar
  43. Dardel C, Kergoat L, Hiernaux P, Mougin E, Grippa M, Tucker C (2014) Re-greening Sahel: 30 years of remote sensing data and field observations (Mali, Niger). Remote Sens Environ 140:350–364.  https://doi.org/10.1016/j.rse.2013.09.011 Google Scholar
  44. de Giesen NV, Rodgers C, Vlek P (2007) The GLOWA Volta Project: Interdisciplinary analysis of the impact of global change on a river basin in West Africa. Int J River Basin Manag 5(1):3–8.  https://doi.org/10.1080/15715124.2007.9635300 Google Scholar
  45. Descroix L, Mahé G, Lebel T, Favreau G, Galle S, Gautier E, Olivry J-C, Albergel J, Amogu O, Cappelaere B, Dessouassi R, Diedhiou A, Breton EL, Mamadou I, Sighomnou D (2009) Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: a synthesis. J Hydrol 375(1–2):90–102.  https://doi.org/10.1016/j.jhydrol.2008.12.012 Google Scholar
  46. Dirmeyer PA, Guo Z, Gao X (2004) Comparison, validation, and transferability of eight multiyear global soil wetness products. J Hydrometeorol 5:1011–1033.  https://doi.org/10.1175/JHM-388.1 Google Scholar
  47. Do FC, Goudiaby VA, Gimenez O, Diagne AL, Diouf M, Rocheteau A, Akpo LE (2005) Environmental influence on canopy phenology in the dry tropics. For Ecol Manag 215(1–3):319–328.  https://doi.org/10.1016/j.foreco.2005.05.022 Google Scholar
  48. Döll P, Müller Schmied H, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720Google Scholar
  49. Du L, Tian Q, Yu T, Meng Q, Jancso T, Udvardy P, Huang Y (2013) A comprehensive drought monitoring method integrating MODIS and TRMM data. Int J Appl Earth Obs Geoinf 23:245–253.  https://doi.org/10.1016/j.jag.2012.09.010 Google Scholar
  50. Erfanian A, Wang G, Yu M, Anyah R (2016) Multimodel ensemble simulations of present and future climates over West Africa: impacts of vegetation dynamics. J Adv Model Earth Syst.  https://doi.org/10.1002/2016MS000660
  51. Falkenmark M, Lundqvist J (1998) Towards water security: political determination and human adaptation crucial. Natl Resour Forum 22(1):37–51.  https://doi.org/10.1111/j.1477-8947.1998.tb00708.x Google Scholar
  52. Falloon P, Betts R (2010) Climate impacts on European agriculture and water management in the context of adaptation and mitigation-the importance of an integrated approach. Sci Total Environ 408(23):5667–5687.  https://doi.org/10.1016/j.scitotenv.2009.05.002 Google Scholar
  53. Famiglietti JS, Rodell M (2013) Water in the balance. Science 340(6138):1300–1301.  https://doi.org/10.1126/science.1236460 Google Scholar
  54. Famiglietti JS, Cazenave A, Eicker A, Reager JT, Rodell M, Velicogna I (2015) Satellites provide the big picture. Science 349(6249):684–685.  https://doi.org/10.1126/science.aac9238 Google Scholar
  55. Fan Y, Dool HV (2004) Climate prediction center global monthly soil moisture data set at \(0.5^\circ\) resolution for 1948 to present. J Geophys Res 109:D10102.  https://doi.org/10.1029/2003JD004345 Google Scholar
  56. Farnsworth A, White E, Williams CJ, Black E, Kniveton DR (2011) Understanding the large scale driving mechanisms of rainfall variability over Central Africa. In: African climate and climate change: physical, social and political perspectives, Springer, Netherlands, pp 101–122.  https://doi.org/10.1007/978-90-481-3842-5_5.
  57. Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45:W00A16.  https://doi.org/10.1029/2007WR006785 Google Scholar
  58. Ferreira V, Asiah Z (2015) An investigation on the closure of the water budget methods over Volta Basin using multi-satellite data. Int Assoc Geodesy Symp.  https://doi.org/10.1007/1345-2015-137 Google Scholar
  59. Ferreira V, Montecino H, Ndehedehe C, Heck B, Gong Z, Westerhaus M, de Freitas S (2018) Space-based observations of crustal deflections for drought characterization in Brazil. Sci Total Environ 644:256–273.  https://doi.org/10.1016/j.scitotenv.2018.06.277 Google Scholar
  60. Fisher-Jeffes L, Carden K, Armitage NP, Winter K (2017) Stormwater harvesting: Improving water security in South Africa’s urban areas. S Afr J Sci 113(1/2):4.  https://doi.org/10.17159/sajs.2017/20160153 Google Scholar
  61. Fontaine B, Bigot S (1993) West African rainfall deficits and sea surface temperatures. Int J Climatol 13(3):271–285.  https://doi.org/10.1002/joc.3370130304 Google Scholar
  62. Forootan E, Kusche J, Loth I, Schuh WD, Eicker A, Awange J, Longuevergne L, Diekkruger B, Shum MSCK (2014) Multivariate prediction of total water storage changes over West Africa from multi-satellite data. Surv Geophys 35(4):913–940.  https://doi.org/10.1007/s10712-014-9292-0 Google Scholar
  63. Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006) Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100(2):252–264.  https://doi.org/10.1016/j.rse.2005.10.027 Google Scholar
  64. Freitas A (2013) Water as a stress factor in sub-Saharan Africa. In: European union institute for security studies, pp 1–4. http://www.iss.europa.eu/uploads/media/Brief_12.pdf. Accessed 12 July 2017
  65. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes. Sci Data 2:150066.  https://doi.org/10.1038/sdata.2015.66 Google Scholar
  66. Gal L, Grippa M, Hiernaux P, Pons L, Kergoat L (2017) The paradoxical evolution of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model. Hydrol Earth Syst Sci 21(9):4591–4613.  https://doi.org/10.5194/hess-21-4591-2017 Google Scholar
  67. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to decadal time scales. Science 302(5647):1027–1030.  https://doi.org/10.1126/science.1089357 Google Scholar
  68. Gizaw MS, Gan TY (2017) Impact of climate change and El Niño episodes on droughts in sub-Saharan Africa. Clim Dyn 49(1):665–682.  https://doi.org/10.1007/s00382-016-3366-2 Google Scholar
  69. Gleick PH (1993) Water and conflict: fresh water resources and international security. Int Secur 18(1):79–112.  https://doi.org/10.2307/2539033 Google Scholar
  70. Gleick PH (2000) The world’s water: Biennial report on freshwater resources 2000–2001. Island Press, Washington, DCGoogle Scholar
  71. Goncàlves J, Peterson J, Deschamps P, Hamelin B, Baba-Sy O (2013) Quantifying the modern recharge of the “fossil” Sahara aquifers. Geophys Res Lett 40:2673–2678.  https://doi.org/10.1002/grl.50478 Google Scholar
  72. Grippa M, Kergoat L, Frappart F, Araud Q, Boone A, de Rosnay P, Lemoine JM, Gascoin S, Balsamo G, Ottlé C, Decharme B, Saux-Picart S, Ramillien G (2011) Land water storage variability over West Africa estimated by gravity recovery and climate experiment (GRACE) and land surface models. Water Resour Res 47(5):W05549.  https://doi.org/10.1029/2009wr008856 Google Scholar
  73. Guan K, Wood EF, Medvigy D, Kimball J, Pan M, Caylor KK, Sheffield J, Xu X, Jones MO (2014) Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. J Geophys Res Biogeosci 119(8):1652–1669.  https://doi.org/10.1002/2013JG002572 Google Scholar
  74. Guan K, Sultan B, Biasutti M, Baron C, Lobell DB (2015) What aspects of future rainfall changes matter for crop yields in West Africa? Geophys Res Lett 42(19):8001–8010.  https://doi.org/10.1002/2015GL063877 Google Scholar
  75. Hall JW, Grey D, Garrick D, Fung F, Brown C, Dadson SJ, Sadoff CW (2014) Coping with the curse of freshwater variability. Science 346(6208):429–430.  https://doi.org/10.1126/science.1257890 Google Scholar
  76. Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80:429–438Google Scholar
  77. Heim RR (2002) A review of twentieth-century drought indices used in the United States. Bull Am Meteorol Soc 83(8):1149–1165Google Scholar
  78. Hély C, Bremond L, Alleaume S, Smith B, Sykes MT, Guiot J (2006) Sensitivity of African biomes to changes in the precipitation regime. Glob Ecol Biogeogr 15(3):258–270.  https://doi.org/10.1111/j.1466-8238.2006.00235.x Google Scholar
  79. Henry C, Allen DM, Huang J (2011) Groundwater storage variability and annual recharge using well-hydrograph and GRACE satellite data. Hydrogeol J 19:741–755.  https://doi.org/10.1007/s10040-011-0724-3 Google Scholar
  80. Herrmann SM, Anyamba A, Tucker CJ (2005) Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob Environ Change 15(4):394–404.  https://doi.org/10.1016/j.gloenvcha.2005.08.004 Google Scholar
  81. Hinderer J, de Linage C, Boya J-P, Gegout P, Masson F, Rogister Y, Amalvict M, Pfeffer J, Littel F, Luck B, Bayerb R, Champollion C, Collard P, Moigne NL, Diamentc M, Deroussi S, de Viron O, Biancale R, Lemoine J-M, Bonvalot S, Gabalda G, Bock O, Genthon P, Boucher M, Favreau G, Séguis L, Delclaux F, Cappelaere B, Oi M, Descloitresh M, Galleh S, Laurent J-P, Legchenko A, Bouink M-N (2009) The GHYRAF (Gravity and Hydrology in Africa) experiment: description and first results. J Geodyn 48:172–181.  https://doi.org/10.1016/j.jog.2009.09.014 Google Scholar
  82. Hoff H (2009) Global water resources and their management. Curr Opin Environ Sustain 1(2):141–147.  https://doi.org/10.1016/j.cosust.2009.10.001 Google Scholar
  83. Houborg R, Rodell M, Li B, Reichle R, Zaitchik BF (2012) Drought indicators based on model-assimilated gravity recovery and climate experiment (GRACE) terrestrial water storage observations. Water Resour Res 48(7):W07525.  https://doi.org/10.1029/2011WR011291 Google Scholar
  84. Hua W, Zhou L, Chen H, Nicholson SE, Raghavendra A, Jiang Y (2016) Possible causes of the central equatorial African long-term drought. Environ Res Lett 11(12):124002.  https://doi.org/10.1088/1748-9326/11/12/124002 Google Scholar
  85. Huber S, Fensholt R, Rasmussen K (2011) Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Glob Planet Change 76(3–4):186–195.  https://doi.org/10.1016/j.gloplacha.2011.01.006 Google Scholar
  86. Humphrey V, Gudmundsson L, Seneviratne SI (2016) Assessing global water storage variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes. Surv Geophys 37(2):357–395.  https://doi.org/10.1007/s10712-016-9367-1 Google Scholar
  87. Ivits E, Horion S, Fensholt R, Cherlet M (2014) Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob Change Biol 20(2):581–593.  https://doi.org/10.1111/gcb.12393 Google Scholar
  88. Janicot S (1992) Spatiotemporal variability of West African rainfall. Part i: regionalizations and typings. J Clim 5(5):489–497Google Scholar
  89. Jenkins GS, Adamou G, Fongang S (2002) The challenges of modeling climate variability and change in West Africa. Clim Change 52(3):263–286.  https://doi.org/10.1023/A:1013741803144 Google Scholar
  90. Kasei R, Diekkrüger B, Leemhuis C (2010) Drought frequency in the Volta Basin of West Africa. Sustain Sci 5(1):89–97Google Scholar
  91. Knauer K, Gessner U, Dech S, Kuenzer C (2014) Remote sensing of vegetation dynamics in West Africa. Int J Remote Sens 35(17):6357–6396.  https://doi.org/10.1080/01431161.2014.954062 Google Scholar
  92. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140.  https://doi.org/10.1126/science.1100217 Google Scholar
  93. Kumar KN, Rajeevan M, Pai D, Srivastava A, Preethi B (2013) On the observed variability of monsoon droughts over India. Weather Clim Extremes 1:42–50.  https://doi.org/10.1016/j.wace.2013.07.006 Google Scholar
  94. Kurnik B, Kajfež-Bogataj L, Horion S (2015) An assessment of actual evapotranspiration and soil water deficit in agricultural regions in Europe. Int J Climatol 35(9):2451–2471.  https://doi.org/10.1002/joc.4154 Google Scholar
  95. Kuylenstierna JL, Björklund G, Najlis P (1997) Sustainable water future with global implications: everyone’s responsibility. Natl Resour Forum 21(3):181–190.  https://doi.org/10.1111/j.1477-8947.1997.tb00691.x Google Scholar
  96. Lammers RB, Shiklomanov AI, Vörösmarty CJ, Fekete BM, Peterson BJ (2001) Assessment of contemporary Arctic river runoff based on observational discharge records. J Geophys Res Atmos 106(D4):3321–3334.  https://doi.org/10.1029/2000JD900444 Google Scholar
  97. Laux P (2009) Statistical modeling of precipitation for agricultural planning in the Volta Basin of West Africa. Doctoral dissertation, Mitteilungen/Institut für Wasserbau, Universität Stuttgart, 179(198). https://elib.uni-stuttgart.de/opus/volltexte/2009/4016/pdf/Dissertation-Laux.pdf. Accessed 25 July 2014
  98. Lebel T, Ali A (2009) Recent trends in the Central and Western Sahel rainfall regime (1990–2007). J Hydrol 375(1–2):52–64.  https://doi.org/10.1016/j.jhydrol.2008.11.030 Google Scholar
  99. Lebel T, Delclaux F, Le Barbé L, Polcher J (2000) From GCM scales to hydrological scales: rainfall variability in West Africa. Stoch Environ Res Risk Assess 14(4):275–295.  https://doi.org/10.1007/s004770000050 Google Scholar
  100. Lebel T, Cappelaere B, Galle S, Hanan N, Kergoat L, Levis S, Vieux B, Descroix L, Gosset M, Mougin E, Peugeot C, Seguis L (2009) AMMA-CATCH studies in the Sahelian region of West-Africa: an overview. J Hydrol 375(1–2):3–13Google Scholar
  101. Leblanc M, Leduc C, Razack M, Lemoalle J, Dagorne D, Mofor L (2003) Applications of remote sensing and GIS for groundwater modelling of large semiarid areas: example of the Lake Chad Basin, Africa. In: Proceedings of the international symposium held at Montpellier, hydrology of the mediterranean and semiarid regions, vol 278, pp 186–191, April 2003Google Scholar
  102. Leduc C, Bromley J, Schroeter P (1997) Water table fluctuation and recharge in semi-arid climate: some results of the HAPEX-Sahel hydrodynamic survey (Niger). J Hydrol 188(188–189):123–138.  https://doi.org/10.1016/S0022-1694(96)03156-3 Google Scholar
  103. Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water-table: the continental terminal in south-west Niger. J Hydrol 243(1–2):43–54.  https://doi.org/10.1016/S0022-1694(00)00403-0 Google Scholar
  104. Lee H, Beighley RE, Alsdorf D, Jung HC, Shum C, Duan J, Guo J, Yamazaki D, Andreadis K (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115(12):3530–3538.  https://doi.org/10.1016/j.rse.2011.08.015 Google Scholar
  105. Lee H, Jung HC, Yuan T, Beighley RE, Duan J (2014) Controls of terrestrial water storage changes over the Central Congo Basin determined by integrating Palsar ScanSar, Envisat Altimetry, and Grace data. Remote Sens Terr Water Cycle Geophys Monogr 206:117–129.  https://doi.org/10.1002/9781118872086.ch7/pdf Google Scholar
  106. Lemoalle J, Bader J-C, Leblanc M, Sedick A (2012) Recent changes in Lake Chad: observations, simulations and management options (1973–2011). Glob Planet Change 80–81:247–254.  https://doi.org/10.1016/j.gloplacha.2011.07.004 Google Scholar
  107. Lettenmaier DP (2005) Observations of the global water cycle–global monitoring networks. In: Anderson MG (ed) Encyclopedia of hydrological sciences, vol 5. Wiley, New York, pp 2719–2732Google Scholar
  108. Li B, Rodell M (2015) Evaluation of a model-based groundwater drought indicator in the conterminous U.S. J Hydrol 526:78–88.  https://doi.org/10.1016/j.jhydrol.2014.09.027 Google Scholar
  109. Li KY, Coe MT, Ramankutty N (2005) Investigation of hydrological variability in West Africa using land surface models. J Clim 18(16):3173–3188.  https://doi.org/10.1175/JCLI3452.1 Google Scholar
  110. Li K, Coe M, Ramankutty N, Jong RD (2007) Modeling the hydrological impact of land-use change in West Africa. J Hydrol 337(3–4):258–268.  https://doi.org/10.1016/j.jhydrol.2007.01.038 Google Scholar
  111. Long D, Scanlon BR, Longuevergne L, Sun AY, Fernando DN, Save H (2013) GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophys Res Lett 40(13):3395–3401.  https://doi.org/10.1002/Grl.50655 Google Scholar
  112. Long D, Shen Y, Sun A, Hong Y, Longuevergne L, Yang Y, Li B, Chen L (2014) Drought and flood monitoring for a large karst plateau in southwest china using extended GRACE data. Remote Sens Environ 155:145–160.  https://doi.org/10.1016/j.rse.2014.08.006 Google Scholar
  113. Lopez T, Antoine R, Kerr Y, Darrozes J, Rabinowicz M, Ramillien G, Cazenave A, Genthon P (2016) Subsurface hydrology of the Lake Chad Basin from convection modelling and observations. Surv Geophys 37(2):471–502.  https://doi.org/10.1007/s10712-016-9363-5 Google Scholar
  114. Lovett JC, Midgley GF, Barnard P (2005) Climate change and ecology in africa. Afr J Ecol 43(3):167–169.  https://doi.org/10.1111/j.1365-2028.2005.00598.x Google Scholar
  115. Mahé G, Olivry J-C (1999) Assessment of freshwater yields to the ocean along the intertropical Atlantic coast of Africa (1951–1989). Comptes Rendus de l’Académie des Sciences–Ser IIA–Earth Planet Sci 328(9):621–626.  https://doi.org/10.1016/S1251-8050(99)80159-1 Google Scholar
  116. Mahé G, Paturel J-E (2009) 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. Comptes Rendus Geosci 341(7):538–546.  https://doi.org/10.1016/j.crte.2009.05.002 Google Scholar
  117. Mahe G, Lienou G, Descroix L, Bamba F, Paturel JE, Laraque A, Meddi M, Habaieb H, Adeaga O, Dieulin C, Chahnez Kotti F, Khomsi K (2013) The rivers of Africa: witness of climate change and human impact on the environment. Hydrol Process 27(15):2105–2114Google Scholar
  118. McCabe MF, Rodell M, Alsdorf DE, Miralles DG, Uijlenhoet R, Wagner W, Lucieer A, Houborg R, Verhoest NEC, Franz TE, Shi J, Gao H, Wood EF (2017) The future of Earth observation in hydrology. Hydrol Earth Syst Sci 21(7):3879–3914.  https://doi.org/10.5194/hess-21-3879-2017 Google Scholar
  119. McKee TB, Doeskin NJ, Kieist J (1993) The relationship of drought frequency and duration to time scales. In: Conference on applied climatology, American meteorological society, Boston, MA, pp 179–184. www.ccc.atmos.colostate.edu/relationshipofdroughtfrequency.pdf. Accessed 27 June 2014
  120. Mehr AD, Kahya E, Ozger M (2014) A gene-wavelet model for long lead time drought forecasting. J Hydrol 517:691–699.  https://doi.org/10.1016/j.jhydrol.2014.06.012 Google Scholar
  121. Mishra AK, Ines AV, Das NN, Khedun CP, Singh VP, Sivakumar B, Hansen JW (2015) Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study. J Hydrol 526:15–29.  https://doi.org/10.1016/j.jhydrol.2014.10.038 Google Scholar
  122. Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37:419–440.  https://doi.org/10.1007/s00382-010-0867-2 Google Scholar
  123. Moore P, Williams SDP (2014) Integration of altimetry lake levels and GRACE gravimetry over Africa: Inferences for terrestrial water storage change 2003–2011. Water Resour Res 50:9696–9720.  https://doi.org/10.1002/2014WR015506 Google Scholar
  124. Nahmani S, Bock O, Bouin M-N, Santamaría-Gómez A, Boy J-P, Collilieux X, Métivier L, Isabelle Panet PG, de Linage C, Wöppelmann G (2012) Hydrological deformation induced by the West African Monsoon: comparison of GPS, GRACE and loading models. J Geophys Res Solid Earth.  https://doi.org/10.1029/2011JB009102
  125. NASA (2002). Grace launch. National Aeronautics And Space Administration. http://www.jpl.nasa.gov/news/press-kits/gracelaunch.pdf Accessed 9 Feb 2017
  126. Ndehedehe CE (2017) Remote sensing of West Africa’s water resources using multi-satellites and models. PhD thesis, Curtin University, Bentley, Perth, Western Australia. http://hdl.handle.net/20.500.11937/59637. Accessed 12 Jan 2018
  127. Ndehedehe C, Awange J, Agutu N, Kuhn M, Heck B (2016a) Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv Water Resour 88:211–230.  https://doi.org/10.1016/j.advwatres.2015.12.009 Google Scholar
  128. Ndehedehe CE, Agutu NO, Okwuashi OH, Ferreira VG (2016b) Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. J Hydrol 540:106–128.  https://doi.org/10.1016/j.jhydrol.2016.05.068 Google Scholar
  129. Ndehedehe CE, Awange JL, Corner R, Kuhn M, Okwuashi O (2016c) On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin. Sci Total Environ 557–558:819–837.  https://doi.org/10.1016/j.scitotenv.2016.03.004 Google Scholar
  130. Ndehedehe CE, Awange J, Kuhn M, Agutu N, Fukuda Y (2017a) Analysis of hydrological variability over the Volta river basin using in-situ data and satellite observations. J Hydrol Reg Stud 12:88–110.  https://doi.org/10.1016/j.ejrh.2017.04.005 Google Scholar
  131. Ndehedehe CE, Awange J, Kuhn M, Agutu N, Fukuda Y (2017b) Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrol Process 31(18):3206–3224.  https://doi.org/10.1002/hyp.11237 Google Scholar
  132. Ndehedehe CE, Agutu NO, Okwuashi O (2018a) Is terrestrial water storage a useful indicator in assessing the impacts of climate variability on crop yield in semi-arid ecosystems? Ecol Indic 88C:51–62.  https://doi.org/10.1016/j.ecolind.2018.01.026 Google Scholar
  133. Ndehedehe CE, Awange JL, Agutu NO, Okwuashi O (2018b) Changes in hydro-meteorological conditions over tropical West Africa (\(1980-2015\)) and links to global climate. Glob Planet Change 162:321–341.  https://doi.org/10.1016/j.gloplacha.2018.01.020 Google Scholar
  134. Ndehedehe CE, Okwuashi O, Ferreira VG, Agutu NO (2018c) Exploring evapotranspiration dynamics over sub-Sahara Africa (\(2000-2014\)). Environ Monit Assess 190(7):400.  https://doi.org/10.1007/s10661-018-6780-6 Google Scholar
  135. Ndehedehe CE, Anyah RO, Alsdorf D, Agutu NO, Ferreira VG (2019) Modelling the impacts of global multi-scale climatic drivers on hydro-climatic extremes (1901–2014) over the congo basin. Sci Total Environ 651:1569–1587.  https://doi.org/10.1016/j.scitotenv.2018.09.203 Google Scholar
  136. Ngom F, Tweed S, Bader J-C, Saos J-L, Malou R, Leduc C, Leblanc M (2016) Rapid evolution of water resources in the Senegal delta. Glob Planet Change 144:34–47.  https://doi.org/10.1016/j.gloplacha.2016.07.002 Google Scholar
  137. Ni S, Chen J, Wilson CR, Li J, Hu X, Fu R (2017) Global terrestrial water storage changes and connections to ENSO events. Surv Geophys.  https://doi.org/10.1007/s10712-017-9421-7 Google Scholar
  138. Nicholson S (2005) On the question of the “recovery” of the rains in the West African Sahel. J Arid Environ 63(3):615–641.  https://doi.org/10.1016/j.jaridenv.2005.03.004 Google Scholar
  139. Nicholson S (2013) The West African Sahel: a review of recent studies on the rainfall regime and its interannual variability. ISRN Meteorol 2013(453521):1–32.  https://doi.org/10.1155/2013/453521 Google Scholar
  140. Nicholson SE (2014) Spatial teleconnections in African rainfall: a comparison of 19th and 20th century patterns. Holocene 24(12):1840–1848.  https://doi.org/10.1177/0959683614551230 Google Scholar
  141. Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim Change 17(2):209–241.  https://doi.org/10.1007/BF00138369 Google Scholar
  142. Nicholson SE, Some B, Kone B (2000) An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Nin̈o and the 1998 La Niña years. J Clim 13(14):2628–2640Google Scholar
  143. Nicholson SE, Some B, Mccollum J, Nelkin E, Klotter D, Berte Y, Diallo BM, Gaye I, Kpabeba G, Ndiaye O, Noukpozounkou JN, Tanu MM, Thiam A, Toure AA, Traore AK (2003) Validation of TRMM and other rainfall estimates with a high-density gauge datasets for West Africa. Part I: validation of GPCC rainfall product and pre-TRMM satellite and blended products. J Appl Meteorol 42:1337–1354.  https://doi.org/10.1175/1520-0450(2003)042C1337:VOTAOR3E2.0.CO;2 Google Scholar
  144. Niu J, Chen J, Sun L (2015) Exploration of drought evolution using numerical simulations over the Xijiang (West River) basin in South China. J Hydrol 526:68–77.  https://doi.org/10.1016/j.jhydrol.2014.11.029 Google Scholar
  145. Nka BN, Oudin L, Karambiri H, Paturel JE, Ribstein P (2015) Trends in floods in West Africa: analysis based on 11 catchments in the region. Hydrol Earth Syst Sci 19(11):4707–4719.  https://doi.org/10.5194/hess-19-4707-2015 Google Scholar
  146. Oettli P, Sultan B, Baron C, Vrac M (2011) Are regional climate models relevant for crop yield prediction in West Africa? Environ Res Lett 6(1):014008.  https://doi.org/10.1088/1748-9326/6/1/014008 Google Scholar
  147. Okonkwo C (2014) An advanced review of the relationships between Sahel precipitation and climate indices: a wavelet approach. Int J Atmos Sci 2014:11.  https://doi.org/10.1155/2014/759067 Google Scholar
  148. Oloruntade AJ, Mohammad TA, Ghazali AH, Wayayok A (2017) Analysis of meteorological and hydrological droughts in the Niger-South Basin, Nigeria. Glob Planet Change 155(Supplement C):225–233.  https://doi.org/10.1016/j.gloplacha.2017.05.002 Google Scholar
  149. Otto FEL, Jones RG, Halladay K, Allen MR (2013) Attribution of changes in precipitation patterns in African rainforests. Philos Trans R Soc Lond B Biol Sci 368(1625):20120299.  https://doi.org/10.1098/rstb.2012.0299 Google Scholar
  150. Owusu K, Waylen P (2009) Trends in spatio-temporal variability in annual rainfall in Ghana (1951–2000). Weather 64(5):115–119Google Scholar
  151. Paeth H, Fink A, Pohle S, Keis F, Machel H, Samimi C (2012) Meteorological characteristics and potential causes of the 2007 flood in sub-Saharan Africa. Int J Climatol 31:1908–1926.  https://doi.org/10.1002/Joc.2199 Google Scholar
  152. Panthou G, Vischel T, Lebel T (2014) Recent trends in the regime of extreme rainfall in the central sahel. Int J Climatol 34(15):3998–4006.  https://doi.org/10.1002/joc.3984 Google Scholar
  153. Paolino DA, Kinter JL III, Kirtman BP, Min D, Straus DM (2012) The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J Clim 25(3):1007–1021.  https://doi.org/10.1175/2011JCLI3934.1 Google Scholar
  154. Paturel J-E, Ouedraogo M, Servat E, Mahe G, Dezetter A, Boyer J-F (2003) The concept of rainfall and streamflow normals in West and Central Africa in a context of climatic variability. Hydrol Sci J 48(1):125–137.  https://doi.org/10.1623/hysj.48.1.125.43479 Google Scholar
  155. Paturel JE, Mahé G, Diello P, Barbier B, Dezetter A, Dieulin C, Karambiri H, Yacouba H, Maiga A (2017) Using land cover changes and demographic data to improve hydrological modeling in the Sahel. Hydrol Process 31(4):811–824.  https://doi.org/10.1002/hyp.11057 Google Scholar
  156. Pellarin T, Tran T, Cohard J-M, Galle S, Laurent J-P, de Rosnay P, Vischel T (2009) Soil moisture mapping over West Africa with a 30-min temporal resolution using AMSR-E observations and a satellite-based rainfall product. Hydrol Earth Syst Sci 13(10):1887–1896.  https://doi.org/10.5194/hess-13-1887-2009 Google Scholar
  157. Petropoulos GP, Ireland G, Barrett B (2015) Surface soil moisture retrievals from remote sensing: current status, products, and future trends. Phys Chem Earth, Parts A/B/C 83–84:36–56.  https://doi.org/10.1016/j.pce.2015.02.009 Google Scholar
  158. Phillips T, Nerem RS, Fox-Kemper B, Famiglietti JS, Rajagopalan B (2012) The influence of ENSO on global terrestrial water storage using GRACE. Geophys Res Lett 39(L16705):2012.  https://doi.org/10.1029/2012GL052495 Google Scholar
  159. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51.  https://doi.org/10.1038/nature09364 Google Scholar
  160. Pierre C, Grippa M, Mougin E, Guichard F, Kergoat L (2016) Changes in Sahelian annual vegetation growth and phenology since 1960: a modeling approach. Glob Planet Change 143:162–174.  https://doi.org/10.1016/j.gloplacha.2016.06.009 Google Scholar
  161. Preisendorfer R (1988) Principal component analysis in meteorology and oceanography. Developments in atmospheric science, vol 17. Elsevier, AmsterdamGoogle Scholar
  162. Prudhomme C, Giuntoli I, Robinson EL, Clark DB, Arnell NW, Dankers R, Fekete BM, Franssen W, Gerten D, Gosling SN, Hagemann S, Hannah DM, Kim H, Masaki Y, Satoh Y, Stacke T, Wada Y, Wisser D (2014) Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc Natl Acad Sci 111(9):3262–3267.  https://doi.org/10.1073/pnas.1222473110 Google Scholar
  163. Ramillien G, Bouhours S, Lombard A, Cazenave A, Flechtner FR, Schmidt (2008) Land water storage contribution to sea level from GRACE geoid data over 2003–2006. Glob Planet Change 60(3–4):381–392.  https://doi.org/10.1016/j.gloplacha.2007.04.002 Google Scholar
  164. Reager JT, Thomas BF, Famiglietti JS (2014) River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat Geosci 7(8):588–592.  https://doi.org/10.1038/ngeo2203 Google Scholar
  165. Reichle RH, Koster RD, Lannoy GJMD, Forman BA, Liu Q, Mahanama SPP, Touré A (2011) Assessment and enhancement of MERRA land surface hydrology estimates. J Clim 24(24):6322–6338.  https://doi.org/10.1175/JCLI-D-10-05033.1 Google Scholar
  166. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim G-K, Bloom S, Chen J, Collins D, Conaty A, da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Molod A, Owens T, Pawson S, Pegion P, Redder CR, Reichle R, Robertson FR, Ruddick AG, Sienkiewicz M, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648.  https://doi.org/10.1175/JCLI-D-11-00015.1 Google Scholar
  167. Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80(1–3):5–22.  https://doi.org/10.1016/j.agwat.2005.07.001 Google Scholar
  168. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng K, Arsenault CJ, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394.  https://doi.org/10.1175/BAMS-85-3-381.R Google Scholar
  169. Rouault M, Richard Y (2003) Intensity and spatial extension of drought in South Africa at different time scales. Water SA 29(4):489–500Google Scholar
  170. Roudier P, Sultan B, Quirion P, Berg A (2011) The impact of future climate change on West African crop yields: what does the recent literature say? Glob Environ Change 21:1073–1083.  https://doi.org/10.1016/j.gloenvcha.2011.04.007 Google Scholar
  171. Roudier P, Ducharne A, Feyen L (2014) Climate change impacts on runoff in west africa: a review. Hydrol Earth Syst Sci 18(7):2789–2801.  https://doi.org/10.5194/hess-18-2789-2014 Google Scholar
  172. Sanogo S, Fink AH, Omotosho JA, Ba A, Redl R, Ermert V (2015) Spatio-temporal characteristics of the recent rainfall recovery in West Africa. Int J Climatol 35(15):4589–4605.  https://doi.org/10.1002/joc.4309 Google Scholar
  173. Santos JF, Pulido-Calvo I, Portela MM (2010) Spatial and temporal variability of droughts in Portugal. Water Resour Res 46(3):W03503.  https://doi.org/10.1029/2009WR008071 Google Scholar
  174. Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11(10):1577–1593.  https://doi.org/10.1111/j.1365-2486.2005.01026.x Google Scholar
  175. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ, Gosling SN, Kim H, Liu X, Masaki Y, Portmann FT, Satoh Y, Stacke T, Tang Q, Wada Y, Wisser D, Albrecht T, Frieler K, Piontek F, Warszawski L, Kabat P (2013) Multimodel assessment of water scarcity under climate change. PNAS 111(9):3245–3250.  https://doi.org/10.1073/pnas.1222460110 Google Scholar
  176. Schuol J, Abbaspour KC (2006) Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Adv Geosci 9:137–143Google Scholar
  177. Seghieri J, Carreau J, Boulain N, De Rosnay P, Arjounin M, Timouk F (2012) Is water availability really the main environmental factor controlling the phenology of woody vegetation in the central Sahel? Plant Ecol 213(5):861–870.  https://doi.org/10.1007/s11258-012-0048-y Google Scholar
  178. Séguis L, Cappelaere B, Milési G, Peugeot C, Massuel S, Favreau G (2004) Simulated impacts of climate change and land-clearing on runoff from a small Sahelian catchment. Hydrol Process 18(17):3401–3413.  https://doi.org/10.1002/hyp.1503 Google Scholar
  179. Semazzi FHM, Mehta V, Sud Y (1988) An investigation of the relationship between sub-Saharan rainfall and global sea surface temperatures. Atmos Ocean 26(1):118–138.  https://doi.org/10.1080/07055900.1988.9649293 Google Scholar
  180. Senay GB, Velpuri NM, Bohms S, Demissie Y, Gebremichael M (2014) Understanding the hydrologic sources and sinks in the Nile Basin using multisource climate and remote sensing data sets. Water Resour Res 50(11):8625–8650.  https://doi.org/10.1002/2013WR015231 Google Scholar
  181. Sheffield J, Wood EF (2008) Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-driven simulations of the terrestrial hydrologic cycle. J Clim 21(3):432–458.  https://doi.org/10.1175/2007JCLI1822.1 Google Scholar
  182. Sheffield J, Ferguson CR, Troy TJ, Wood EF, McCabe MF (2009) Closing the terrestrial water budget from satellite remote sensing. Geophys Res Lett 36(7):L07403Google Scholar
  183. Sheffield J, Wood EF, Chaney N, Guan K, Sadri S, Yuan X, Olang L, Amani A, Ali A, Demuth S, Ogallo L (2014) A drought monitoring and forecasting system for Sub-Sahara African water resources and food security. Bull Am Meteorol Soc 95(6):861–882.  https://doi.org/10.1175/BAMS-D-12-00124.1 Google Scholar
  184. Shiferaw B, Tesfaye K, Kassie M, Abate T, Prasanna B, Menkir A (2014) Managing vulnerability to drought and enhancing livelihood resilience in sub-Saharan Africa: technological, institutional and policy options. Weather Clim Extremes 3:67–79.  https://doi.org/10.1016/j.wace.2014.04.004 Google Scholar
  185. Shiklomanov IA (2000) Appraisal and assessment of world water resources. Water Int 25(1):11–32.  https://doi.org/10.1080/02508060008686794 Google Scholar
  186. Singh A, Kulkarni MA, Mohanty UC, Kar SC, Robertson AW, Mishra G (2012) Prediction of Indian summer monsoon rainfall (ISMR) using canonical correlation analysis of global circulation model products. Meteorol Appl 19(2):179–188.  https://doi.org/10.1002/met.1333 Google Scholar
  187. Sneeuw N, Lorenz C, Devaraju B, Tourian M, Riegger J, Kunstmann H, Bárdossy A (2014) Estimating runoff using hydro-geodetic approaches. Surv Geophys 35(6):1333–1359.  https://doi.org/10.1007/s10712-014-9300-4 Google Scholar
  188. Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34(8):2792–2804.  https://doi.org/10.1002/joc.3875 Google Scholar
  189. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment (GRACE) measurements of time-variable gravity. J Geophys Res Solid Earth.  https://doi.org/10.1029/2001jb000576
  190. Swenson S, Wahr J (2007) Multi-sensor analysis of water storage variations of the Caspian Sea. Geophys Res Lett.  https://doi.org/10.1029/2007gl030733
  191. Tall M, Sylla MB, Diallo I, Pal JS, Faye A, Mbaye ML, Gaye AT (2016) Projected impact of climate change in the hydroclimatology of Senegal with a focus over the Lake of Guiers for the twenty-first century. Theor Appl Climatol.  https://doi.org/10.1007/s00704-016-1805-y
  192. Tapley B, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:1–4.  https://doi.org/10.1029/2004GL019920 Google Scholar
  193. Tarhule A, Zume JT, Grijsen J, Talbi-Jordan A, Guero A, Dessouassi RY, Doffou H, Kone S, Coulibaly B, Harshadeep NR (2015) Exploring temporal hydroclimatic variability in the Niger Basin (1901–2006) using observed and gridded data. Int J Climatol 35(4):520–539.  https://doi.org/10.1002/joc.3999 Google Scholar
  194. Thiemig V, Rojas R, Zambrano-Bigiarini M, Roo AD (2013) Hydrological evaluation of satellite-based rainfall estimates over the Volta and Baro-Akobo Basin. J Hydrol 499:324–338.  https://doi.org/10.1016/j.jhydrol.2013.07.012 Google Scholar
  195. Thomas AC, Reager JT, Famiglietti JS, Rodell M (2014) A GRACE-based water storage deficit approach for hydrological drought characterization. Geophys Res Lett 41(5):1537–1545.  https://doi.org/10.1002/2014GL059323 Google Scholar
  196. Tiwari VM, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36(18):L18401.  https://doi.org/10.1029/2009GL039401 Google Scholar
  197. Todd M, Andersson L, Ambrosino C, Hughes D, Kniveton DR, Mileham L, Murray-Hudson M, Raghavan S, Taylor R, Wolski P (2011) Climate change impacts on hydrology in Africa: case studies of river basin water resources. In: African climate and climate change: physical, social and political perspectives, Springer, Dordrecht, pp 123–153.  https://doi.org/10.1007/978-90-481-3842-5_5
  198. Tourian M, Schwatke C, Sneeuw N (2017) River discharge estimation at daily resolution from satellite altimetry over an entire river basin. J Hydrol 546:230–247.  https://doi.org/10.1016/j.jhydrol.2017.01.009 Google Scholar
  199. Tucker CJ, Dregne HE, Newcomb WW (1991) Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253(5017):299–300.  https://doi.org/10.1126/science.253.5017.299 Google Scholar
  200. van der Molen M, Dolman A, Ciais P, Eglin T, Gobron N, Law B, Meir P, Peters W, Phillips O, Reichstein M, Chen T, Dekker S, Doubková M, Friedl M, Jung M, van den Hurk B, de Jeu R, Kruijt B, Ohta T, Rebel K, Plummer S, Seneviratne S, Sitch S, Teuling A, van der Werf G, Wang G (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151(7):765–773.  https://doi.org/10.1016/j.agrformet.2011.01.018 Google Scholar
  201. van Huijgevoort M (2014) Hydrological drought: characterisation and representation in large-scale models. PhD thesis, Wageningen University, Wageningen, NL. http://library.wur.nl/WebQuery/wda/2057611. Accessed 1 Feb 2017
  202. Van Loon AF, Stahl K, Di Baldassarre G, Clark J, Rangecroft S, Wanders N, Gleeson T, Van Dijk AIJM, Tallaksen LM, Hannaford J, Uijlenhoet R, Teuling AJ, Hannah DM, Sheffield J, Svoboda M, Verbeiren B, Wagener T, Van Lanen HAJ (2016) Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 20(9):3631–3650.  https://doi.org/10.5194/hess-20-3631-2016 Google Scholar
  203. Velicogna I, Kimball JS, Kim Y (2015) Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia. Environ Res Lett 10(12):124024Google Scholar
  204. Vicente-Serrano SM (2006) Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000). Hydrol Sci J 51(1):83–97.  https://doi.org/10.1623/hysj.51.1.83 Google Scholar
  205. Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16(10):1–27.  https://doi.org/10.1175/2012EI000434.1 Google Scholar
  206. Vörösmarty CJ, Douglas EM, Green PA, Revenga C (2005) Geospatial indicators of emerging water stress: an application to Africa. AmbioGoogle Scholar
  207. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288.  https://doi.org/10.1126/science.289.5477.284 Google Scholar
  208. Vörösmarty C, Askew A, Grabs W, Barry RG, Birkett C, Döll P, Goodison B, Hall A, Jenne R, Kitaev L, Landwehr J, Keeler M, Leavesley G, Schaake J, Strzepek K, Sundarvel SS, Takeuchi K, Webster F (2001) Global water data: a newly endangered species. EOS Trans Am Geophys Union 82(5):54–58.  https://doi.org/10.1029/01EO00031 Google Scholar
  209. Wada Y, Bierkens MFP, de Roo A, Dirmeyer PA, Famiglietti JS, Hanasaki N, Konar M, Liu J, Müller Schmied H, Oki T, Pokhrel Y, Sivapalan M, Troy TJ, van Dijk AIJM, van Emmerik T, Van Huijgevoort MHJ, Van Lanen HAJ, Vörösmarty CJ, Wanders N, Wheater H (2017) Human-water interface in hydrological modelling: current status and future directions. Hydrol Earth Syst Sci 21(8):4169–4193.  https://doi.org/10.5194/hess-21-4169-2017 Google Scholar
  210. Wagner S, Kunstmann H, Bárdossy A, Conrad C, Colditz R (2009) Water balance estimation of a poorly gauged catchment in West Africa using dynamically downscaled meteorological fields and remote sensing information. Phys Chem Earth 34:25–235.  https://doi.org/10.1016/j.pce.2008.04/.002 Google Scholar
  211. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30229.  https://doi.org/10.1029/98jb02844 Google Scholar
  212. Wald L (1990) Monitoring the decrease of Lake Chad from space. Geocarto Int 5(3):31–36.  https://doi.org/10.1080/10106049009354266 Google Scholar
  213. Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo basin rainfall climatology: can we believe the climate models? Philos Trans R Soc Lond B: Biol Sci 368(1625):20120296.  https://doi.org/10.1098/rstb.2012.0296 Google Scholar
  214. Werth S, White D, Bliss DW (2017) GRACE detected rise of groundwater in the Sahelian Niger River Basin. J Geophys Res Solid Earth.  https://doi.org/10.1002/2017JB014845
  215. White WB, Gershunov A, Annis JL, McKeon G, Syktus J (2004) Forecasting Australian drought using Southern Hemisphere modes of sea-surface temperature variability. Int J Climatol 24(15):1911–1927.  https://doi.org/10.1002/joc.1091 Google Scholar
  216. WMO (2013) WMO statement on the status of the global climate in 2012. World Meteorological Organization, WMO No.1108. www.wmo.int/pages/prog/wcp/wcdmp/documents/WMO1108.pdf. Accessed 15 June 2015
  217. WMO (2015). The climate in Africa: 2013. World Meteorological Organization, WMO No.1147. http://www.wmo.int/pages/prog/wcp/wcdmp/documents/1147_EN.pdf. Accessed 26 Jan 2017
  218. Wouters B, Bonin JA, Chambers DP, Riva REM, Sasgen I, Wahr J (2014) GRACE, time-varying gravity, earth system dynamics and climate change. Rep Prog Phys 77(11):116801.  https://doi.org/10.1088/0034-4885/77/11/116801 Google Scholar
  219. Xie H, Longuevergne L, Ringler C, Scanlon BR (2012) Calibration and evaluation of a semi-distributed watershed model of Sub-Saharan Africa using GRACE data. Hydrol Earth Syst Sci 16(9):3083–3099.  https://doi.org/10.5194/hess-16-3083-2012 Google Scholar
  220. Yang D, Ye B, Kane DL (2004) Streamflow changes over Siberian Yenisei River Basin. J Hydrol 296(1–4):59–80.  https://doi.org/10.1016/j.jhydrol.2004.03.017 Google Scholar
  221. Yang Y, Long D, Guan H, Scanlon BR, Simmons CT, Jiang L, Xu X (2014) GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. J Geophys Res Biogeosci 119(12):2245–2260.  https://doi.org/10.1002/2014JG002670 Google Scholar
  222. Zhang D, Zhang Q, Werner AD, Liu X (2016) GRACE-based hydrological drought evaluation of the Yangtze River Basin, China. J Hydrometeorol 17(3):811–828.  https://doi.org/10.1175/JHM-D-15-0084.1 Google Scholar
  223. Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C, Hwang T (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature 509(7498):86–90.  https://doi.org/10.1038/nature13265 Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Australian Rivers Institute and School of Environment and ScienceGriffith UniversityNathanAustralia

Personalised recommendations