Acta Geophysica

, Volume 67, Issue 2, pp 703–719 | Cite as

Precipitation and other propagation impairments effects at microwave and millimeter wave bands: a mini survey

  • Sarat Kumar KotamrajuEmail author
  • Ch Sri Kavya Korada
Research Article - Atmospheric and Space Sciences


The current past has seen a sensational increment in the utilization of satellites for the applications like navigation, entertainment, media transmission, remote sensing, mobile communications, weather forecasting, defense and other purposes. These applications are assigned in the microwave and millimeter wave bands, which offer higher information transfer possibility in lesser time and use very small antennas and devices by ensuring secured and effective communications. However, beyond the 10 GHz range of frequencies these applications are generally subjected to signal losses due to various atmospheric parameters like rain, clouds, fog, hail ice and other applicable phenomena. The main factor for the signal degradation is the rainfall. The attenuation caused by rain increases with frequency, as there is increased absorption of the RF energy at higher frequencies due to water drops present along the path of the transmission; hence, the signal attenuation is more in higher-frequency bands. The other factors that induce losses in the signal are the clouds, gases present in the lower atmosphere and the different layers in the atmosphere that cause scintillation and the system losses and cable losses. This survey article abridges all outcomes related to propagation impairments and attenuation aspects at microwave and millimeter wave frequencies covering the studies of various researchers in last three decades. In addition, few of the models developed by various researchers were listed along with model parameters which are useful for the propagation engineers and others who are interested in this specialization.


Propagation impairments Rain attenuation Cloud attenuation Earth–space paths Microwave and millimeter frequencies 



The authors particularly thank the funding given from Science and Engineering Research Board, Ministry of Science and Technology (DST), Government of India, under EMR grants with F. No: EMR/2015/000100. The authors likewise thank the administration of Koneru Lakshmaiah Education Foundation (KL University) for supporting and empowering this work by giving the facilities in Center for Applied Research in Electromagnetics (CARE), Department of Electronics and Communication Engineering.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdul Rahim SK, Sum CS, Din J, Rahman TA, Aziz ZAA, Awang A (2002) Rain attenuation study over terrestrial and earth satellite links in Malaysia. In: International union of radio science XXVIIth general assembly. Maastricht, Holland, pp 1483–1487Google Scholar
  2. Ajayi GO, Feng SR, Reddy BM (1996) Handbook on radio propagation related to satellite in tropical and subtropical countries 58Google Scholar
  3. Ajewole MO, Kolawole LB, Ajayi GO (1999) Theoretical study of the effect of different types of tropical rainfall on microwave and millimeter-wave propagation. Radio Sci 34(5):1103–1124Google Scholar
  4. Ajose SO, Sadiku NO, Goni U (1995) Computation of attenuation, phase rotation, and cross-polarization of radio waves due to rainfall in tropical regions. IEEE Trans Antennas Propag 43(1):1–5Google Scholar
  5. Allnutt JE, Haidara F (1998) Ku-band diurnal rain fade statistics from three, two-year, earth–space experiments in equatorial Africa. In: Proceedings of URSI commission F open symposium climatic parameters in radiowave propagation prediction, pp 27–29Google Scholar
  6. Amaya C (2002) Impact of clouds and gases on satcom links at Ka and EHF bands. In: 20th AIAA international communication satellite systems conference and exhibit, American Institute of Aeronautics and Astronautics, Montreal, Quebec, CanadaGoogle Scholar
  7. Amaya C, Rogers DV (2002) Characteristics of rain fading on Ka-band satellite-earth links in a Pacific maritime climate. IEEE Trans Microw Theory Tech 50(1):41–45Google Scholar
  8. Angeletti P, Lisi M (2012) A systemic approach to the compensation of rain attenuation in Ka-band communication satellites. Int J Microw Sci Technol 2012:1–7Google Scholar
  9. Arapoglou P-DM, Panagopoulos AD, Chatzarakis GE, Kanellopoulos JD, Cottis PG (2004) Diversity techniques for satellite communications: an educational graphical tool. IEEE Antenna Propag Mag 46(3):109–114Google Scholar
  10. Arbesser-Rastburg BR, Brussaard G (1993) Propagation research in Europe using the OLYMPUS satellite. Proc IEEE 81(6):865–875Google Scholar
  11. Arnold H, Cox D, Rustako A (1981) Rain attenuation at 10–30 GHz along earth–space paths: elevation angle, frequency, seasonal, and diurnal effects. IEEE Trans Commun 29(5):716–721Google Scholar
  12. Arslan CH, Aydin K, Urbina JV, Dyrud L (2018) Satellite-link attenuation measurement technique for estimating rainfall accumulation. IEEE Trans Geosci Remote Sens 56(2):681–693Google Scholar
  13. Awang MA, Din J (2004) Comparison of the rain drop size distribution model in tropical region. In: RF and microwave conference, 2004. RFM 2004. Proceedings, IEEE, pp 20–22Google Scholar
  14. Baquero M, Cruz-Pol S, Bringi VN, Chandrasekar V (2005) Rain-rate estimate algorithm evaluation and rainfall characterization in tropical environments using 2DVD, rain gauges and TRMM data. In: International geoscience and remote sensing symposium, vol 2, p 1146Google Scholar
  15. Barbara AK, Devi M, Timothy KI, Sharma S (1993) Microwave propagation in relation to atmospheric parameters over different terrains of Assam Valley. In: Geoscience and remote sensing symposium, 1993. IGARSS’93. Better understanding of earth environment., International, IEEE, pp 261–263Google Scholar
  16. Begum S, Otung IE (2008) Characterization of rain attenuation in Bangladesh and application to satellite link design. Radio Science 43(01):1–16Google Scholar
  17. Brooker RL (2004) U.S. Patent No. 6,813,476. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  18. Brussaard G, Rogers DV (1990) Propagation considerations in satellite communication systems. Proc IEEE 78(7):1275–1282Google Scholar
  19. Bryant GH, Adimula I, Riva C, Brussaard G (2001) Rain attenuation statistics from rain cell diameters and heights. Int J Satell Commun 19(3):263–283Google Scholar
  20. Capsoni C, Fedi F, Paraboni A (1987a) A comprehensive meteorologically oriented methodology for the prediction of wave propagation parameters in telecommunication applications beyond 10 GHz. Radio Sci 22(3):387–393Google Scholar
  21. Capsoni C, Fedi F, Magistroni C, Paraboni A, Pawlina A (1987b) Data and theory for a new model of the horizontal structure of rain cells for propagation applications. Radio Sci 22(03):395–404Google Scholar
  22. Catalán C, Vilar E (2002) Simultaneous analysis of downlink beacon dynamics and sky brightness temperature. Part II: extraction of amplitude scintillations. IEEE Trans Antennas Propag 50(4):535–545Google Scholar
  23. Cerqueira JL, Assis MS (2013) Rainfall rate duration study for performance assessment of satellite communication links. Int J Microw Sci Technol 2013:1Google Scholar
  24. Chaisang A, Hemmakorn N (2000) Satellite due to rain fading at Klong downlink availability of Thaicom 3 Yai ground station. In: TENCON 2000. Proceedings, vol 1, IEEE, pp 106–108Google Scholar
  25. Chandrasekar V, Fukatsu H, Mubarak K (2003) Global mapping of attenuation at Ku-and Ka-band. IEEE Trans Geosci Remote Sens 41(10):2166–2176Google Scholar
  26. Charles EM, Jaeger BE (2002) Rain attenuation model comparison and validation. Online J Space Commun (2):1-29.
  27. Chu CY, Chen KS (2005) Effects of rain fading on the efficiency of the Ka-band LMDS system in the Taiwan area. IEEE Trans Veh Technol 54(1):9–19Google Scholar
  28. Costa E (1983) An analytical and numerical comparison between two rain attenuation prediction methods for earth–satellite paths. In: ESA wave propagation and remote sensing, (SEE N83-29494 18-32), pp 213–218Google Scholar
  29. Crane RK (1985) Evaluation of global and CCIR models for estimation of rain rate statistics. Radio Sci 20(4):865–879Google Scholar
  30. Crane RK (2002) Analysis of the effects of water on the ACTS propagation terminal antenna. IEEE Trans Antennas Propag 50(7):954–965Google Scholar
  31. Crane RK, Blood DW (1979) Handbook for the estimation of microwave propagation effects—link calculations for Earth-Space Paths. Environmental Research and Technology Rpt. No. 1, DoC. No. P-7376-TRLGoogle Scholar
  32. Czarnecki M (2000) Compensation of rain attenuation for ka-band satellite systems. In: 13th international conference on microwaves, radar and wireless communications. MIKON-2000, vol 2. IEEE, pp 439–442Google Scholar
  33. D’Amico MM, Holt AR, Capsoni C (1998) An anisotropic model of the melting layer. Radio Sci 33(3):535–552Google Scholar
  34. Damodar M (2005) Applications of propagation models to design geostationary satellite links operating in Ka-band over indian rain zones. In: Proceedings of the 28th URSI general assembly, IndiaGoogle Scholar
  35. da Silva Mello LAR, Costa E, de Souza RSL (2002) Rain attenuation measurements at 15 and 18 GHz. Electron Lett 38(4):197–198Google Scholar
  36. Das D, Maitra A (2015) Rain attenuation prediction during rain events in different climatic regions. J Atmos Solar Terr Phys 128:1–7Google Scholar
  37. Davies PG, Mackenzie EC (1981) Review of SHF and EHF slant path propagation measurements made near Slough (UK). In: IEE Proceedings H (microwaves, optics and antennas), vol 128, no. 1. IET Digital Library, pp 53–65Google Scholar
  38. del Pino PG, Riera JM, Benarroch A (2005) Slant path attenuation measurements at 50 GHz in Spain. IEEE Antennas Wirel Propag Lett 4(1):162–164Google Scholar
  39. Devika SV, Kotamraju SK, Kavya KCS, Kumar VS, Suhas K, Vinu K, Anudeep B (2016) A circularly polarized Ka-band antenna for continuous link reception from GSAT-14. Indian J Sci Technol 9(38)Google Scholar
  40. Devika S, Karki K, Kotamraju SK, Kavya K, Rahman MZ (2017) A new computation method for pointing accuracy of Cassegrain antenna in satellite communication. J Theor Appl Inf Technol 95(13)Google Scholar
  41. Dissanayake A (2002) Ka-band propagation modeling for fixed satellite applications. Online J Space Commun 2:1–5Google Scholar
  42. Dissanayake A, Allnut J, Haidara F (1997) A prediction model that combines rain attenuation and other propagation impairments along Earth Satellite Paths. IEEE Trans Antennas Propag 45(10):1546–1558Google Scholar
  43. Dissanayake A, Allnut J, Haidara F (2001) Cloud attenuation modeling for SHF and EHF applications. Int J Satell Commun 19(3):335–345Google Scholar
  44. Dutton EJ, Dougherty HT, Martin RF Jr (1974) Prediction of European rainfall and link performance coefficients at 8 to 30 GHZ. Institute for Telecommunication Sciences, BoulderGoogle Scholar
  45. Ekpenyong BE, Srivastava RC (1970) Radar characteristics of the melting layer: a theoretical study. University of Chicago, Department of the Geophysical Sciences, ChicagoGoogle Scholar
  46. Emiliani LD, Agudelo J, Gutierrez E, Restrepo J, Fradique-Mendez C (2004) Development of rain-attenuation and rain-rate maps for satellite system design in the Ku and Ka bands in Colombia. IEEE Antennas Propag Mag 46(6):54–68Google Scholar
  47. Erwin K, Fontan FP, Angeles Vazquez Castro M, Buonomo S, Arbesser-Rastburg BR, Baptista JPVP (2000) Ka-band propagation measurements and statistics for land mobile satellite applications. IEEE Trans Veh Technol 49(3):973–984Google Scholar
  48. Fashuyi MO, Afullo TJ (2007) Rain attenuation prediction and modeling for line-of-sight links on terrestrial paths in South Africa. Radio Sci 42(5):1–15Google Scholar
  49. Fedi F (1985) Special issue on the COST 205 project on earth–satellite radio propagation above 10 GH2. Association of Elettrotec. ed Electron. ItalianaGoogle Scholar
  50. Feldhake GS, Ailes-Sengers L (2002) Comparison of multiple rain attenuation models with three years of Ka band propagation data concurrently taken at eight different locations. Online J Space Commun.
  51. Felix LEM, Pontes MS, Dhein NR, Migliora CG (2006) Unavailability due to rain of VSAT networks operating in Ka and Ku bands in Brazil. Int J Satell Commun Netw 24(3):203–213Google Scholar
  52. Fiebig U-C (2004) A time series generator modeling rain fading. Institute of communication and navigation, German Aerospace Center, DLR Report—2004Google Scholar
  53. Flavin RK (1996) Satellite link rain attenuation in Brisbane and a proposed new model for Australia. In: Telstra Research Laboratories, Report, (8375)Google Scholar
  54. Goldhirsh J, Dockery D (2004) Propagation characteristics for coastal region of South Korea and their impact on communication systems. In: Military communications conference, 2004. MILCOM 2004. 2004 IEEE, vol 1. IEEE, pp 460–465Google Scholar
  55. Grémont BC, Filip M (2004) Spatio-temporal rain attenuation model for application to fade mitigation techniques. IEEE Trans Antennas Propag 52(5):1245–1256Google Scholar
  56. Halder T, Adhikari A, Maitra A (2018) Rain attenuation studies from radiometric and rain DSD measurements at two tropical locations. J Atmos Solar Terr Phys 170:11–20Google Scholar
  57. Hansson L (1990) New concept used to predict slant path rain attenuation statistics. In: IEE proceedings H (microwaves, antennas and propagation), vol. 137, no. 2. IET Digital Library, pp 89–93Google Scholar
  58. Hasanuddin ZB, Fujisaki K, Ishida K, Tateiba M (2002a) Measurement of Ku-band rain attenuation using several VSATs in Kyushu Island, Japan. IEEE Antennas Wirel Propag Lett 1(1):116–119Google Scholar
  59. Hasanuddin ZB, Fujisaki K, Ishida K, Tateiba M (2002b) Measurement of Ku-band rain attenuation using several VSATs in Kyushu Island, Japan. IEEE Antennas Wirel Propag Lett 1(1):116–119Google Scholar
  60. Hatsuda T, Aoki Y, Echigo H, Takahata F, Maekawa Y, Fujisaki K (2004) Ku-band long distance site-diversity (SD) characteristics using new measuring system. IEEE Trans Antennas Propag 52(6):1481–1491Google Scholar
  61. Helmken H, Henning RE, Feil J, Ippolito LJ, Mayer CE (1997) A three-site comparison of fade-duration measurements. Proc IEEE 85(6):917–925Google Scholar
  62. Hardaker PJ (1992) A study of the melting layer in single polarisation radar echoes with application to operational weather radar (Doctoral dissertation, University of Essex)Google Scholar
  63. Hendrantoro G, Zawadzki I (2003) Derivation of parameters of YZ power-law relation from raindrop size distribution measurements and its application in the calculation of rain attenuation from radar reflectivity factor measurements. IEEE Trans Antennas Propag 51(1):12–22Google Scholar
  64. Hogg DC, Chu TS (1975) The role of rain in satellite communications. Proc IEEE 63(9):1308–1331Google Scholar
  65. Hugues V (1999) Prediction of tropospheric scintillation on satellite links from radiosonde data. IEEE Trans Antennas Propag 47(2):293–302Google Scholar
  66. Immadi G, Kotamraju SK, Khan H, Venkata Narayana M, Jaya Krishna Pooja M (2014a) Implementation of data logging as a part of propagation impairment studies of Ku band satellite signal with the establishment of low cost experimental setup. Int J Appl Eng Res 9(3):355–367Google Scholar
  67. Immadi G, Kotamraju SK, Khan H, Venkata Narayana M, Hemavasavi K, Pooja Naga Sai K, Sirisha N (2014b) Estimation of Ku band satellite signal propagation impairment due to rain in tropical environment using ITU-R. Int J Appl Eng Res 9(20):7149–7168Google Scholar
  68. Immadi G, Kotamraju SK, Khan H, Venkata Narayana M (2014c) Rain rate-radar reflectivity relationship for drop size distribution and rain attenuation calculation of Ku band signals. Int J Eng Technol 6(2):815–824Google Scholar
  69. Immadi G, Kotamraju SK, Venkata Narayana M, Khan H, Sreemadhuri A, Sravya Chowdary K, Vineela P (2015a) Measurement of tropospheric scintillation using Ku band satellite beacon data in tropical region. J Eng Appl Sci 10(4):1568–1575Google Scholar
  70. Immadi G, Kotamraju SK, Venkata Narayana M, Rajkamal K, Habibulla K, Viswanath G, Avinash I (2015b) Measurement of rain attenuation for Ku band satellite signal in tropical environment using DAH, SAM models. RPN J Eng Appl Sci 10(4):1717–1725Google Scholar
  71. Immadi G, Narayana MV, Kotamraju SK, Kavya K, Maneesha S, Ravali K, Sravani C (2017a) Computation of effects of troposphere on Ku band down link signal in tropical regions. J Theor Appl Inf Technol 95(9):2078–2087Google Scholar
  72. Immadi G, Narayana MV, Kotamraju SK, Sarvani T, Manasa T, Yaswant CV, Kalyan JA (2017b) Computation of attenuation due to rain for Ku band frequencies using DSD for the tropical region. J Theor Appl Inf Technol 95(10)Google Scholar
  73. Islam MR, Chebil J, Tharek AR (1999) Frequency scaling of rain attenuation from 23-to 38-GHz microwave signals measured in malaysia. In: Microwave conference, 1999 Asia Pacific, vol 3. IEEE, pp 793–796Google Scholar
  74. ITU-R.P.618-3-5-7-8-9 (1994-1997-2002-2004-2007) Propagation data and prediction methods required for the design of earth–space telecommunication systems. Recommendations International Telecommunications UnionGoogle Scholar
  75. ITU-R.P.676-4-7 (1999-2007)Attenuation by atmospheric gases in the frequency range 1–350 GHz. Recommendations International Telecommunications UnionGoogle Scholar
  76. ITU-R.P.840-3 (1999) Attenuation due to clouds and fog. Recommendations International Telecommunications UnionGoogle Scholar
  77. John Philip B, Kotamraju SK, Sri Kavya KC, Madhumitha R, Pavan Kumar A (2017) Performance evaluation of attenuation time series generators over Indian region. J Adv Res Dyn Control Syst 2017(Special Issue 2):48–55Google Scholar
  78. Kalyan SSS, Kavya KCS, Kotamraju SK (2017) A reconfigurable beam steering linear phased array antenna for Ku band satellite communication using graphing method. J Adv Res Dyn Control Syst 2012:63–71Google Scholar
  79. Kanellopoulos JD, Clarke RH (1981) A study of the joint statistics of rain depolarization and attenuation applied to the prediction of radio link performance. Radio Sci 16(2):203–211Google Scholar
  80. Karasawa Y, Matsudo T (1991) Characteristics of fading on low-elevation angle earth–space paths with concurrent rain attenuation and scintillation. IEEE Trans Antennas Propag 39(5):657–661Google Scholar
  81. Karasawa Y, Yamada M, Allnutt JE (1988) A new prediction method for tropospheric scintillation on earth–space paths. IEEE Trans Antennas Propag 36(11):1608–1614Google Scholar
  82. Kassianides CN, Otung IE (2003) Dynamic model of tropospheric scintillation on earth-space paths. IEE Proc Microw Antennas Propag 150(2):97–104Google Scholar
  83. Karhu S, Salonen E, Hyvonen R, Uppala S, Baptista JP (1993) Prediction of rain attenuation at low-availabilities using models and data of widespread and convective rains. In: Eighth international conference on antennas and propagation, vol 1993. IET, pp 56–59Google Scholar
  84. Kestwal MC, Joshi S, Garia LS (2014) Prediction of rain attenuation and impact of rain in wave propagation at microwave frequency for tropical region (Uttarakhand, India). Int J Microw Sci Technol 2014:1Google Scholar
  85. Khajepuri F, Ghorbani A, Amindavar H (2004) A new method for estimating rain attenuation at high frequencies. In: Proceedings of the 3rd International conference on computational electromagnetics and its applications, 07803-8562-4/2004. IEEE, pp 76–79Google Scholar
  86. Khan SA, Tawfik AN, Gibbins CJ, Gremont BC (2003) Extra-high frequency line-of-sight propagation for future urban communications. IEEE Trans Antennas Propag 51(11):3109–3121Google Scholar
  87. Kilaru A, Kotamraju SK, Avlonitis N, Kavya KCS (2016) Rain rate intensity model for communication link design across the Indian region. J Atmos Solar Terr Phys 145:136–142Google Scholar
  88. Kim JC, Schall DE (1999) On the improvement of low elevation angle satellite communications impaired by tropospheric fading effects. In: Military communications conference proceedings, 1999. MILCOM 1999. IEEE, vol 1. IEEE, pp 603–607Google Scholar
  89. Kishore KV, Rajesh GS, Kumar V, Srinivasulu P, Kavya KCS, Kotamraju SK (2015) Design and simulation of 8-way unequal amplitude equal phase RF feeder network using conventional microstrip technology for 430 MHz tropospheric wind profiling radar. In: 2015 International conference on signal processing and communication engineering systems (SPACES). IEEE, pp 226–230Google Scholar
  90. Kubista E, Fontan FP, Castro MV, Buonomo S, Arbesser-Rastburg BR, Baptista JPVP (2000) Ka-band propagation measurements and statistics for land mobile satellite applications. IEEE Trans Veh Technol 49(3):973–983Google Scholar
  91. Kumar A, Hudiara IS, Jassal BS, Singh J (2004) Measurement of rain-induced zenith-path attenuation using 19.9 GHz radiometer at Amritsar (India). IEEE Trans Antennas Propag 52(3):702–708Google Scholar
  92. Lee JH, Kim YS, Kim JH, Choi YS, Pack JK (2001) Influence of rain attenuation models on the link availability of Ka-band non-GSO FSS system. In: Antennas and propagation society international symposium, 2001. IEEE, vol 3. IEEE, pp 104–108Google Scholar
  93. Lee JH, Choi YS, Lee HS, Pack JK (2003). Real-time estimation of rain attenuation on the satellite link. In: Vehicular technology conference, 2003. VTC 2003-Spring. The 57th IEEE semiannual, vol 4. IEEE, pp 2291–2294Google Scholar
  94. Lekkla R, Prapinmongkolkarn P (1998) Diurnal variations in rain attenuation on Ku band earth–space paths. Int J Satell Commun 16(5):219–236Google Scholar
  95. Lekkla R, McCormick KS, Rogers DV (1998) 12-GHz fade duration statistics on earth–space paths in South–East Asia. In: Proceedings of URSI commission F open symposium on climatic parameters in radiowave propagation prediction (CLIMPARA 98), Ottawa, Ontario, Canada, pp 167–170Google Scholar
  96. Lin DP, Chen HY (2002) An empirical formula for the prediction of rain attenuation in frequency range 0.6–100 GHz. IEEE Trans Antennas Propag 50(4):545–552Google Scholar
  97. Liou YA (2000) Radiometric observation of atmospheric influence on space-to-earth Ka-band propagation in Taiwan. In: Proceedings of national science council, Republic of China. Part A, physical science and engineering, vol 24, no. 3, pp 238–247Google Scholar
  98. Locatelli JD, Hobbs PV (1974) Fall speeds and masses of solid precipitation particles. J Geophys Res 79(15):2185–2197Google Scholar
  99. Madhuri AS, Immadi G, Narayana MV (2018) Estimation of cumulative distribution of scintillation effect on Ku band frequencies for one of the tropical regions using various models. J Eng Sci Technol Rev 11(1):151–155Google Scholar
  100. Maekawa Y, Fujiwara T, Shibagaki Y, Sato T, Yamamoto M, Hashiguchi H, Fukao S (2004) First year results on rain attenuation characteristics of satellite links at equatorial atmospheric radar. In: Antennas and propagation society international symposium, 2004. IEEE, vol 2, IEEE, pp 1660–1663Google Scholar
  101. Maitra A (2004) Rain attenuation modeling from measurements of rain drop size distribution in the Indian region. IEEE Antennas Wirel Propag Lett 3(1):180–181Google Scholar
  102. Maitra A, Chakravarty K (2005) Ku-band rain attenuation observations on an earth–space path in the Indian region. In: 28th URSI-GA, pp 23–29Google Scholar
  103. Maitra A, Adhikari A, Bhattacharya A (2012) Some characteristics of earth–space path propagation phenomena at a tropical location. 92.60. jf; 92.60. KcGoogle Scholar
  104. Manabe T, Yoshida T (1995) Rain attenuation characteristics on radio links. In: 1995 URSI international symposium on signals, systems, and electronics, 1995. ISSSE’95, proceedings. IEEE, pp 77–80Google Scholar
  105. Mandeep J, Islam M (2012) Evaluation of statistical tropospheric scintillation models using SUPERBIRD-C satellite for Malaysia. Acta Geophys 60(4):1180–1191Google Scholar
  106. Mandeep SJS, Hassan SIS, Tanaka K, Ain F, Igarashi F, Iida M (2007) Measurement of tropospheric scintillation from satellite beacon at Ku-band In South East Asia. IJCSNS Int J Comput Sci Netw Secur 7(2):251–256Google Scholar
  107. Mandeep JS, Hassan SIS, Tanaka K (2008) Rainfall effects on Ku-band satellite link design in rainy tropical climate. J Geophys Res: Atmos 113(D5)Google Scholar
  108. Manning RM (1984) A rain attenuation model for satellite link attenuation predictions incorporating the spatial inhomogeneity of rainrate. Int J Satell Commun 2(3):187–197Google Scholar
  109. Martellucci A (2002) Radiowave propagation modelling for SatCom services at Ku-band and above. COST action 255 final reportGoogle Scholar
  110. Martellucci A, Luini L, Testoni A, Paraboni A, Riva C (2000) Assessment of the spatial correlation of water vapour, liquid water and rain amounts in Europe. North America and Japan using ECMWF, Re-analysis data, ESA reportGoogle Scholar
  111. Matricciani E (1991) Rain attenuation predicted with a two-layer rain model. Eur Trans Telecommun 2(6):715–727Google Scholar
  112. Matricciani E (2008) Global formulation of the synthetic storm technique to calculate rain attenuation only from rain rate probability distributions. In: Antennas and propagation society international symposium, 2008. AP-S 2008. IEEE. IEEE, pp 1–4Google Scholar
  113. Matricciani E, Mauri M (1995) Italsat-Olympus 20-GHz orbital diversity experiment at Spino d’Adda. IEEE Trans Antennas Propag 43(1):105–108Google Scholar
  114. Matricciani E, Riva C, Castanet L (2006) Performance of the synthetic storm technique in a low elevation 5 slant path at 44.5 GHz in the French Pyrénées. In: First European conference on antennas and propagation, 2006. EuCAP 2006. IEEE, pp 1–6Google Scholar
  115. Mauri M, Paraboni A, Tarducci D (1986) Depolarization measurements at 11.6 GHz on earth–space paths using the SIRIO satellite. IEEE Trans Antennas Propag 34(4):582–585Google Scholar
  116. McCarthy DK, Allnutt JE, Salazar WE, Wanmi F (1994) Results of 11.6 GHz radiometric experiment in Cameroon: second year. Electron Lett IEE 30(17):1449–1450Google Scholar
  117. Mello L, Pontes MS (2012) Unified method for the prediction of rain attenuation in satellite and terrestrial links. J Microw Optoelectron Electromagn Appl 11(1):1–14Google Scholar
  118. Michelson DG, Liu W (2009) Simulation of rain fading and scintillation on Ka-band earth–LEO satellite links. In: Canadian conference on electrical and computer engineering, 2009. CCECE’09, IEEE, pp 635–640Google Scholar
  119. Misme P, Waldteufel P (1980) A model for attenuation by precipitation on a microwave earth–space link. Radio Sci 15(3):655–665Google Scholar
  120. Mitra SK, Vohl O, Ahr M, Pruppacher HR (1990) A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. IV: experiment and theory for snow flakes. J Atmos Sci 47(5):584–591Google Scholar
  121. Mohamad H, Hamaguchi K, Teh CH, Lee SW, Arif NAM, Wee CY (2006) Joint study of rain attenuation effect for fixed wireless access system. Project report NICT-MMU, JapanGoogle Scholar
  122. Mondal NC, Sarkar SK (2003) Rain height in relation to 0 °C isotherm height for satellite communication over the Indian Subcontinent. Theoret Appl Climatol 76(1–2):89–104Google Scholar
  123. Mondal NC, Timothy KI, Battacharaya AB, Sakar SK (1997) Technical note The effect of rate of decay of rain path profile on microwave communication. Int J Remote Sens 18:3669–3675Google Scholar
  124. Mondal NC, Sarkar SK, Bhattacharya AB, Mali P (2001) Rain height in relation to 0 °C isotherm height over some Indian tropical locations and rain attenuation for an Indian south coastal station for microwave and millimeter wave communication systems. Int J Infrared Millimeter Waves 22(3):495–504Google Scholar
  125. Moupfouma F (1984) Improvement of a rain attenuation prediction method for terrestrial microwave links. IEEE Trans Antennas Propag 32(12):1368–1372Google Scholar
  126. Moupfouma F (1993) Point rainfall rate cumulative distribution function valid at various locations. Electron Lett 29(17):1503–1505Google Scholar
  127. Nackoney OG, Davidson D (1982) Results of 11.7-GHz CTS rain attenuation measurements at Waltham, Massachusetts. Radio Sci 17(06):1435–1442Google Scholar
  128. Naicker K, Mneney SH (2006) Propagation measurements and multipath channel modelling for line-of-sight links at 19.5 GHz. Res J 97:162–171Google Scholar
  129. Nelson B, Stutzman WL (1996) Fade slope on 10 to 30 GHz earth–space communication links—measurements and modelling. IEE Proc Microw Antennas Propag 143(4):353–357Google Scholar
  130. Oguchi T (1983) Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc IEEE 71(9):1029–1078Google Scholar
  131. Ojo JS, Omotosho TV (2013) Comparison of 1-min rain rate derived from TRMM satellite data and raingauge data for microwave applications in Nigeria. J Atmos Solar Terr Phy 102:17–25Google Scholar
  132. Ojo JS, Owolawi PA (2015) Application of synthetic storm technique for diurnal and seasonal variation of slant path Ka-band rain attenuation time series over a subtropical location in South Africa. Int J Antennas PropagGoogle Scholar
  133. Ojo JS, Ajewole MO, Sarkar SK (2008) Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over Nigeria. Prog Electromagn Res 5:207–223Google Scholar
  134. Ojo JS, Ajewole MO, Emiliani LD (2009) One-minute rain-rate contour maps for microwave-communication-system planning in a tropical country: Nigeria. IEEE Antennas Propag Mag 51(5):82–89Google Scholar
  135. Ong JT, Timothy KI, Chong JH, Rao SVB (2003) Heavy rain effects on the propagation of free space optical links in SingaporeGoogle Scholar
  136. Pan QW, Allnutt JE (2004) 12-GHz fade durations and intervals in the tropics. IEEE Trans Antennas Propag 52(3):693–701Google Scholar
  137. Pan QW, Allnutt JE, Haidara F (2000) Seasonal and diurnal rain effects on Ku-band satellite link designs in rainy tropical regions. Electron Lett 36(9):1Google Scholar
  138. Panagopoulos AD, Kanellopoulos JD (2003) On the rain attenuation dynamics: spatial-temporal analysis of rainfall rate and fade duration statistics. Int J Satell Commun Netw 21(6):595–611Google Scholar
  139. Panagopoulos AD, Arapoglou PDM, Cottis PG (2004) Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun Surv Tutorial 6(3):2–14Google Scholar
  140. Panchal P, Joshi R (2016) Performance analysis and simulation of rain attenuation models at 12–40 GHz band for an earth space path over Indian cities. Proc Comput Sci 79:801–808Google Scholar
  141. Paraboni A, Capsoni C, Zaccarini F (1995) The horizontal structure of rain and its impact on the design of advanced satellite systems at centimetre and millimetre wavelengths. In: Microwave and optoelectronics conference, 1995. Proceedings., 1995 SBMO/IEEE MTT-S international, vol 2. IEEE, pp 519–525Google Scholar
  142. Park YH, Lee JH, Jambaljav N, Pack JK (2002) Empirical study on the rain drop-size model for rain attenuation calculations. In:  Proceedings of the URSI general assembly, vol 4, pp 01213.
  143. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644.
  144. Polaries Baptista JPV, Kubista E, Witternig N, Randeu WL (1989) Worst-month statistics for high outage probabilities. In: Antennas and propagation, 1989. ICAP 89., sixth international conference on (Conf. publ. no. 301), IET, pp 10–13Google Scholar
  145. Polaries Bapista JPV, Kubista E, Wittering N, Randeu WL (1990) Worst-month statistics for high outage probabilities. ESA/ESTEC, INW/TU Graz, The Netherlands, AustriaGoogle Scholar
  146. Polonio R, Riva C (1998) ITALSAT propagation experiment at 18.7, 39.6, and 49.5 GHz at Spino D'Adda: three years of CPA statistics. IEEE Trans Antennas Propag AP 46(5):631–635Google Scholar
  147. Pontes MS, Mello LS, Migliora CGS (1990) Ku-band slant-path radiometric measurements at three locations in Brazil. Int J Satell Commun 8(3):239–249Google Scholar
  148. Pontes MS, da Silva Mello L, de Souza RSL, Miranda ECB (2005) Review of rain attenuation studies in tropical and equatorial regions in Brazil. In: 2005 Fifth international conference on information, communications and signal processing. IEEE, pp 1097–1101Google Scholar
  149. Rachan L, Prasit P (1998) Diurnal variations in rain attenuation on Ku band earth–space paths. Int J Satel Commun 16:219–236Google Scholar
  150. Rahim RA, Leong LC, Chan KS, Pang JF (2005) Data acquisition process in optical tomography: signal sample and hold circuit. In: 1st international conference on computers, communications, & signal processing with special track on biomedical engineering, 2005. CCSP 2005. IEEE, pp 189–192Google Scholar
  151. Raina MK (1996) Atmospheric emission measurements of attenuation by microwave radiometer at 19.4 GHz. IEEE Trans Antennas Propag 44(2):188–191Google Scholar
  152. Raina M, Uppal G (1981) Rain attenuation measurements over New Delhi with a microwave radiometer at 11 GHz. IEEE Trans Antennas Propag 29(6):857–864Google Scholar
  153. Raina M, Uppal G (1984) Frequency dependence of rain attenuation measurements at microwave frequencies. IEEE Trans Antennas Propag 32(2):185–187Google Scholar
  154. Rakshit G, Adhikari A, Maitra A (2017) Modelling of rain decay parameter for attenuation estimation at a tropical location. Adv Space Res 59(12):2901–2908Google Scholar
  155. Ramachandran V, Kumar V (2004) Rain attenuation measurement on Ku-band satellite TV downlink in small island countries. Electron Lett 40(1):49–50Google Scholar
  156. Ramachandran V, Kumar V (2007) Modified rain attenuation model for tropical regions for Ku-Band signals. Int J Satell Commun Netw 25(1):53–67Google Scholar
  157. Rao TN, Rao DN, Mohan K, Raghavan S (2001) Classification of tropical precipitating systems and associated Z–R relationships. J Geophys Res: Atmos 106(D16):17699–17711Google Scholar
  158. Raynaud L, Chenerie I, Lemorton J (1999) Improved modelling of propagation and backscattering of millimetre waves in the melting layerGoogle Scholar
  159. Recommendation CCIR (1992) Method for the subjective assessment of the quality of television pictures. CCIR Broadcasting Service (Television), pp 166–189Google Scholar
  160. Reddy GV (2005) Atmospheric constraints in HF UHF satellite communication in the Indian Sub ContinentGoogle Scholar
  161. Rice P, Holmberg N (1973) Cumulative time statistics of surface-point rainfall rates. IEEE Trans Commun 21(10):1131–1136Google Scholar
  162. Rodda MJ, Williamson AG (1997) Results of a two year radiometric measurement programme in New Zealand. Electron Lett 33(4):326–328Google Scholar
  163. Rogister A, Mertens D, Vanhoenacker-Janvier D, Martellucci A, Arbesser-Rastburg B (2003) RAPIDS: radio propagation integrated database system. In: Meeting and joint workshop with COST272, ESTEC, The NetherlandsGoogle Scholar
  164. Russchenberg HWJ, Ligthart LP (1996) Backscattering by and propagation through the melting layer of precipitation: a new polarimetric model. IEEE Trans Geosci Remote Sens 34(1):3–14Google Scholar
  165. Salonen ET, Baptista JP (1997) A new global rainfall rate model. In: Tenth international conference on antennas and propagation, (conf. publ. no. 436), vol 2. IET, pp 182–185Google Scholar
  166. Salonen E, Uppala S (1991) New prediction method of cloud attenuation. Electron Lett 27(12):1106–1108Google Scholar
  167. Sánchez-Lago I, Fontán FP, Mariño P, Fiebig UC (2007) Validation of the synthetic storm technique as part of a time-series generator for satellite links. IEEE Antennas Wirel Propag Lett 6:372–375Google Scholar
  168. Sarat Kumar K, Vijaya Bhaskara Rao S, Narayana Rao D (2008) Prediction of Ku band rain attenuation using experimental data and simulations for Hassan, India. Int J Comput Sci Netw Secur IJCSNS, 8(4):P10–P15. ISSN: 1738:7906Google Scholar
  169. Sarkar SK, Prasad MVSN, Dutta HN, Reddy BM, Rao DN (1989) Rain and extent of cells over the Indian subcontinent. In: Sixth international conference on antennas and propagation, ICAP 89 (Conf Publ No 301), vol 2, pp 318–321Google Scholar
  170. Sarkar SK, Prasad MVSN, Dutta HN, Reddy BM (1995) Rain attenuation for satellite paths over two tropical stations. In: Ninth international conference on antennas and propagation, 1995., (conf. publ. no. 407), vol 2. IET, pp 94–98Google Scholar
  171. Semire FA, Mohd-Mokhtar R, Ismail W, Mohamad N, Mandeep JS (2015) Modeling of rain attenuation and site diversity predictions for tropical regions. Annales Geophysicae (09927689) 33(3):321–331Google Scholar
  172. Shrestha S, Choi DY (2017) Characterization of rain specific attenuation and frequency scaling method for satellite communication in South Korea. Int J Antennas Propag 2017Google Scholar
  173. Singliar R, Bitó J, Din J, Tharek AR (2006) Comparison of predicted attenuation of satellite rain attenuation distribution in Malaysia and Hungary. In: Proceedings of the 16th international Czech–Slovakia scientific conference radioelektronika, pp 246–249Google Scholar
  174. Stewart RE, Marwitz JD, Pace JC, Carbone RE (1984) Characteristics through the melting layer of stratiform clouds. J Atmos Sci 41(22):3227–3237Google Scholar
  175. Stutzman WL (1993) Prolog to the special section on propagation effects on satellite communication links. Proc IEEE 81:850–855Google Scholar
  176. Stutzman WL, Dishman WK (1982) A simple model for the estimation of rain-induced attenuation along earth–space paths at millimeter wavelengths. Radio Sci 17(6):1465–1476Google Scholar
  177. Sum CS, Din J, Tharek AR, Abidi MZ (2003) Studies on characteristics of rain fade at 23 GHz for terresterial links. In: Asia-Pacific conference on applied electromagnetics (APACE 2003), 7803-8129-7/03/2003. IEEE, Shah Alam, Malaysia, pp 76–79Google Scholar
  178. Suryana J, Utoro S, Tanaka K, Igarashi K, Jida M (2005a) Study of prediction models compared with the measurement results of rainfall rate and Ku-band rain attenuation at Indonesian tropical cities. In: 2005 Fifth international conference on information, communications and signal processing. IEEE, pp 1580–1584Google Scholar
  179. Suryana J, Utoro S, Tanaka K, Igarashi K, Jida M (2005b) Two years characterization of concurrent Ku-band rain attenuation and tropospheric scintillation in Bandung, Indonesia using JCSAT3. In: 2005 Fifth international conference on information, communications and signal processing. IEEE, pp 1585–1589Google Scholar
  180. Svjatogor L (1985) Telecommunication working group. Dresden, GDR, ReportGoogle Scholar
  181. Thurai M, Deguchi E, Okamoto K, Salonen E (2005) Rain height variability in the tropics. IEE Proc Microw Antennas Propag 152(1):17–23Google Scholar
  182. Timothy KI, Ong JT, Choo EBL (2000) Descriptive fade slope statistics on INTELSAT Ku-band communication link. Electron Lett 36(16):1422–1424Google Scholar
  183. Timothy KI, Ong JT, Choo EB (2002) Raindrop size distribution using method of moments for terrestrial and satellite communication applications in Singapore. IEEE Trans Antennas Propag 50(10):1420–1424Google Scholar
  184. van de Kamp MMJL (2002a) Rain attenuation as a Markov process: how to make an event. In: 2nd international workshop of COST action, vol 280, pp 26–28Google Scholar
  185. van de Kamp MMJL, Castanet L (2002b) Propagation modeling and fade mitigation for Ka-band satellite system. In: 1st international workshop COST-280, PM3018Google Scholar
  186. Ventouras S, Wrench CL (1999) Diurnal variations of 20 GHz and 40 GHz slant path attenuation statistics in southern EnglandGoogle Scholar
  187. Verma AK, Jha KK (1996) Rain drop size distribution model for Indian climate. J Radio Space Phys 25:15–21Google Scholar
  188. Vogel WJ (1982) Measurements of satellite beacon attenuation at 11.7, 19.04, and 28.56 GHz and radiometric site diversity at 13.6 GHz. Radio Sci 17(6):1511–1520Google Scholar
  189. Walther Å, Terje T (2003) A novel method for predicting site dependent specific rain attenuation of millimeter radio waves. IEEE Trans Antennas Propag 51:2987–3000Google Scholar
  190. Watson PA, Hu YF (1994) Prediction of attenuation on satellite-earth links for systems operating with low fade margins. IEE Proc Microw Antennas Propag 141(6):467–473Google Scholar
  191. Watson PA, Leitao MJ, Turney O, Sengupta N (1985) Development of a climatic map of rainfall attenuation for Europe. Postgraduate School of Electrical & Electronic Engineering, University of Bradford, Report No. 372 (Final report for ESA/ESTEC contract No. 5192/82/NL/GM)Google Scholar
  192. Wilson PS, Toumi R (2005) A fundamental probability distribution for heavy rainfall. Geophys Res Lett 32(14):L14812Google Scholar
  193. Yamada M, Miura Y (1998) Rain attenuation characteristics at 12 GHz on an earth–space path. In: 1998 International conference on microwave and millimeter wave technology proceedings, 1998. ICMMT’98. IEEE, pp 1016–1019Google Scholar
  194. Yang H, He C, Zhu H, Song W (2000) Prediction of slant path rain attenuation based on artificial neural network. In: The 2000 IEEE international symposium on circuits and systems, 2000. Proceedings. ISCAS 2000 Geneva, vol 1. IEEE, pp 152–155Google Scholar
  195. Yang H, He C, Zhu H, Song W (2001) Earth–space rain attenuation model based on EPNet-evolved artificial neural network. IEICE Trans Commun 84(9):2540–2549Google Scholar
  196. Yee TS, Kooi PS, Leong MS, Li LW (2001) Tropical raindrop size distribution for the prediction of rain attenuation of microwaves in the 10–40 GHz band. IEEE Trans Antennas Propag 49(1):80–83Google Scholar
  197. Yussuff AI, Khamis NH (2012) Rain attenuation modelling and mitigation in the tropics: brief review. Int J Electr Comput Eng 2(6):748–757Google Scholar
  198. Yussuff AI, Khamis NHH (2013) Modified ITU-R rain attenuation prediction model for a tropical station. J Ind Intell Inf 1(3)Google Scholar
  199. Zhang W, Karhu SI, Salonen ET (1994) Predictions of radiowave attenuations due to a melting layer of precipitation. IEEE Trans Antennas Propag 42(4):492–501Google Scholar
  200. Zhenwei Z, Leke L, Yumei L (2003) A prediction model of rain attenuation along earth–space path. In: 2003 6th international symposium on antennas, propagation and EM theory, 2003. Proceedings. IEEE, pp 516–519Google Scholar
  201. Zhenwei Z, Leke L, Yumei L (2004) Prediction models for rain effects on earth–space links. In: Radio science conference, 2004. Proceedings. 2004 Asia–Pacific. IEEE, pp K22–K25Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electronics & Communication EngineeringKoneru Lakshmaiah Education FoundationGunturIndia

Personalised recommendations