Advertisement

Acta Geophysica

, Volume 66, Issue 2, pp 121–130 | Cite as

Simulation of the microtremor H/V spectrum based on the theory of surface wave propagation in a layered half-space

  • Zhen Zhang
  • Xueliang Chen
  • Mengtan Gao
  • Zongchao Li
  • Qianfeng Li
Research Article - Solid Earth Sciences
  • 264 Downloads

Abstract

Subsurface velocity structures must be estimated to predict long-period ground motions and seismic hazards. Subsurface velocity structures can be constructed via an inversion of the horizontal-to-vertical (H/V) spectral ratio of microtremor (MHV) curves; thus, a method of simulating the MHV curves is key. In this study, we use the H/V spectral ratio of the surface wave (SHV) based on the surface wave propagation theory in a layered half-space to simulate the MHV curves at sites A and B of the Yuxi basin. Then, we attempt to analyze the features of the SHV curves. We find the H/V ratio of the microtremor loading source to be independent of the peak frequency of the SHV curve, but it has some relation to the amplitude of the SHV curve. Moreover, to reduce the error in subsurface velocity structures obtained by the MHV curves, we suggest that the SHV curves at near-peak frequencies should not be considered in the inversion, because the amplitude deviation is higher at the peak frequency of the MHV curve. In addition, the best frequency ranges for the inversion of the microtremor H/V spectrum are between the peak and trough frequencies of the microtremor H/V spectrum.

Keywords

Seismic hazard Velocity structure Microtremor Surface wave H/V spectrum Microtremor loading source 

Notes

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (Nos. 51278470, 51678537) and the Key Laboratory of Seismic Observation and Geophysical Imaging Project. The microtremor records were obtained from the China Seismic Array at http://www.chinaarray.org. The authors thank the anonymous referees for their comments, which contributed to improving the work.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

References

  1. Aki K (1957) Space and time spectra of stationary stochastic waves, with special reference to microtremors. Bull Earthq Res Inst Tokyo Univ 35:415–456Google Scholar
  2. Apostolidis P, Raptakis D, Roumelioti Z, Pitilakis K (2004) Determination of S-wave velocity structure using microtremors and SPAC method applied in Thessaloniki (Greece). Soil Dyn Earthq Eng 24(1):49–67.  https://doi.org/10.1016/j.soildyn.2003.09.001 CrossRefGoogle Scholar
  3. Arai H, Tokimatsu K (2000) Effects of Rayleigh and Love waves on microtremor H/V spectra. In: the 12th world conference on earthquake engineering, Auckland, New Zealand, 30 January–4 February 2000Google Scholar
  4. Arai H, Tokimatsu K (2004) S-wave velocity profiling by inversion of microtremor H/V spectrum. Bull Seismol Soc Am 94(1):53–63CrossRefGoogle Scholar
  5. Arai H, Tokimatsu K (2005) S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bull Seismol Soc Am 95(5):1766–1778.  https://doi.org/10.1785/0120040243 CrossRefGoogle Scholar
  6. Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fäh D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167(2):827–837CrossRefGoogle Scholar
  7. Bonnefoy-Claudet S, Köhler A, Cornou C, Wathelet M, Bard PY (2008) Effects of Love waves on microtremor H/V ratio. Bull Seismol Soc Am 98(1):288–300CrossRefGoogle Scholar
  8. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418CrossRefGoogle Scholar
  9. Carcione JM, Picotti S, Francese R, Giorgi M, Pettenati F (2017) Effect of soil and bedrock anelasticity on the S-wave amplification function. Geophys J Int 208:424–431CrossRefGoogle Scholar
  10. Chen XL, Gao MT, Yu YX, Chen K, Li TF (2014) Applicability of topographic slope method for seismic site soil classification of Yuxi-Jiangchuan-Tonghai-Basin in China. Earthq Eng Eng Dyn S1:146–152 (in Chinese) Google Scholar
  11. Claprood M, Asten MW, Kristek J (2011) Using the SPAC microtremor method to identify 2D effects and evaluate 1D shear-wave velocity profile in valleys. Bull Seismol Soc Am 101(101):826–847.  https://doi.org/10.1785/0120090232 CrossRefGoogle Scholar
  12. Delgado J, Casado CL, Giner J, Estevez A, Cuenca A, Molina S (2000) Microtremors as a geophysical exploration tool: applications and limitations. Pure Appl Geophys 157(9):1445–1462CrossRefGoogle Scholar
  13. Dolenc D (2005) Microseisms observations in the Santa Clara Valley, California. Bull Seismol Soc Am 95(3):1137–1149CrossRefGoogle Scholar
  14. Endrun B (2011) Love wave contribution to the ambient vibration H/V amplitude peak observed with array measurements. J Seismol 15(3):443–472CrossRefGoogle Scholar
  15. Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145(2):535–549CrossRefGoogle Scholar
  16. Fäh D, Kind F, Giardini D (2003) Inversion of local s-wave velocity structures from average H/V ratios, and their use for the estimation of site-effects. J Seismol 7(4):449–467.  https://doi.org/10.1023/B:JOSE.0000005712.86058.42 CrossRefGoogle Scholar
  17. Gao MT, Yu YX, Zhang XM, Wu J, Hu P, Ding YH (2002) Three-dimensional finite-difference simulations of ground motions in the Beijing area. Earthq Res China 18(4):356–364 (in Chinese) Google Scholar
  18. García-Jerez A, Luzón F, Sánchez-Sesma FJ, Lunedei E, Albarello D, Santoyo MA, Almendros J (2013) Diffuse elastic wavefield within a simple crustal model. Some consequences for low and high frequencies. J Geophys Res-Solid Earth 118(10):5577–5595CrossRefGoogle Scholar
  19. García-Jerez A, Piña-Flores J, Sánchez-Sesma FJ, Luzón F, Perton M (2016) A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption. Comput Geosci 97:67–78CrossRefGoogle Scholar
  20. Guéguen P, Cornou C, Garambois S, Banton J (2007) On the limitation of the h/v spectral ratio using seismic noise as an exploration tool: application to the grenoble valley (france), a small apex ratio basin. Pure Appl Geophys 164(1):115–134.  https://doi.org/10.1007/s00024-006-0151-x CrossRefGoogle Scholar
  21. Harkrider DG (1964) Surface waves in multilayered elastic media, part 1. Bull Seismol Soc Am 54(2):627–679Google Scholar
  22. Harkrider DG (1970) Surface waves in multilayered elastic media, part 2. Bull Seismol Soc Am 60(6):1937–1987Google Scholar
  23. Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43(1):17–34Google Scholar
  24. He ZQ, An HS, Shen K, Lu LY, Hu G, Ye TL (2013) Detection of Puduhe fault in Yuxi basin of Yunnan by seismic reflection method. Acta Seismol Sin 35(6):836–847 (in Chinese) Google Scholar
  25. Hobiger M, Bard PY, Cornou C, Bihan NL (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophys Res Lett 36(14):L14303CrossRefGoogle Scholar
  26. Horike M (1985) Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. J Phys Earth 33(2):59–96CrossRefGoogle Scholar
  27. Köhler A, Ohrnberger, M., Scherbaum, F (2006) The relative fraction of Rayleigh and Love waves in ambient vibration wavefields at different European sites. In: Third international symposium on the effects of surface geology on seismic motion Grenoble, France, 30 August–1 September 2006Google Scholar
  28. Köhler A, Ohrnberger M, Scherbaum F, Wathelet M, Cornou C (2007) Assessing the reliability of the modified three-component spatial autocorrelation technique. Geophys J Int 168(2):779–796CrossRefGoogle Scholar
  29. Komatitsch D, Liu Q, Tromp J, Süss P, Stidham C, Shaw JH (2004) Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull Seismol Soc Am 94(1):187–206CrossRefGoogle Scholar
  30. Lachetl C, Bard PY (1994) Numerical and theoretical investigations on the possibilities and limitations of Nakamura’s technique. Earth Planets Space 42(5):377–397.  https://doi.org/10.4294/jpe1952.42.377 Google Scholar
  31. Lunedei E, Albarello D (2010) Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophys J Int 181(2):1342–1342Google Scholar
  32. Lunedei E, Malischewsky P (2015) A review and some new issues on the theory of the H/V technique for ambient vibrations. Perspectives on european earthquake engineering and seismology. Springer, New York, pp 371–394Google Scholar
  33. Malischewsky PG, Scherbaum F (2004) Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion 40:57–67CrossRefGoogle Scholar
  34. Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremor (part 2). J Seismol Soc Jpn 24(1):26–40Google Scholar
  35. Özalaybey S, Zor E, Ergintav S, Tapırdamaz MC (2011) Investigation of 3-d basin structures in the İzmit bay area (turkey) by single-station microtremor and gravimetric methods. Geophys J Int 186(2):883–894CrossRefGoogle Scholar
  36. Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32(1):67–100.  https://doi.org/10.1029/2004GL021115 CrossRefGoogle Scholar
  37. Picozzi M, Parolai S, Richwalski SM (2005) Joint inversion of H/V ratios and dispersion curves from seismic noise: estimating the S-wave velocity of bedrock. Geophys Res Lett 32(11):339–357.  https://doi.org/10.1029/2005GL022878 CrossRefGoogle Scholar
  38. Piña-Flores J, Perton M, Garcíajerez A, Carmona E, Luzon F, Molina-Villegas JC, S´anchez-Sesma FJ (2017) The inversion of spectral ratio H/V in a layered system using the diffuse field assumption. Geophys J Int 208:577–588CrossRefGoogle Scholar
  39. Rhie J, Dreger D (2009) A simple method for simulating microseism H/V spectral ratio in 3D structure. Geosci J 13(4):401–406.  https://doi.org/10.1007/s12303-009-0036-y CrossRefGoogle Scholar
  40. Rong MS, Wang ZM, Woolery EW, Lyu YJ, Li XJ, Li SY (2016) Nonlinear site response from the strong ground-motion recordings in western China. Soil Dyn Earthq Eng 82(4):99–110CrossRefGoogle Scholar
  41. Sánchez-Sesma FJ, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo MA, Rodríguez-Castellanos A (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int 186(1):221–225.  https://doi.org/10.1111/j.1365-246X.2011.05064.x CrossRefGoogle Scholar
  42. Satoh T, Kawase H, Iwata T, Higashi S, Sato T, Irikura K, Huang HC (2001) S-wave velocity structure of the Taichung basin, Taiwan, estimated from array and single-station records of microtremors. Bull Seismol Soc Am 91(5):1267–1282CrossRefGoogle Scholar
  43. Seht IV, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. Bull Seismol Soc Am 89(1):250–259Google Scholar
  44. Shani-Kadmiel S, Tsesarsky M, Louie JN, Gvirtzman Z (2012) Simulation of seismic-wave propagation through geometrically complex basins: the dead sea basin. Bull Seismol Soc Am 102(4):1729–1739CrossRefGoogle Scholar
  45. Tamura S (1996) Comparison of body and Rayleigh wave displacements generated by a vertical point force on a layered elastic medium. In the 11th World conference on earthquake engineering, Acapulco, Mexico, 23–28 June 1996Google Scholar
  46. Tsuboi S, Saito M (1983) Partial derivatives of Rayleigh wave particle motion. Earth Planets Space 31(2):103–113Google Scholar
  47. Uebayashi H (2003) Extrapolation of irregular subsurface structures using the horizontal-to-vertical spectral ratio of long-period microtremors. Bull Seismol Soc Am 93(2):570–582CrossRefGoogle Scholar
  48. Uebayashi H, Kawabe H, Kamae K (2012) Reproduction of microseism H/V spectral features using a three-dimensional complex topographical model of the sediment-bedrock, interface in the Osaka sedimentary basin. Geophys J Int 189(2):1060–1074.  https://doi.org/10.1111/j.1365-246X.2012.05408.x CrossRefGoogle Scholar
  49. Wu CF, Huang HC (2012) Estimation of shallow S -wave velocity structure in the Puli basin, Taiwan, using array measurements of microtremors. Earth Planets Space 64(5):389–403.  https://doi.org/10.5047/eps.2011.12.002 CrossRefGoogle Scholar
  50. Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bull Seismol Soc Am 84(6):1831–1841Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of GeophysicsChina Earthquake AdministrationBeijingChina
  2. 2.General Construction Company of CCTEB Group Co., Ltd.WuhanChina

Personalised recommendations