Current Medical Science

, Volume 38, Issue 6, pp 962–967 | Cite as

Relationship between Volatile Anesthetics and Tumor Progression: Unveiling the Mystery

  • Bo Jiao
  • Chun Yang
  • Nian-nian Huang
  • Ning Yang
  • Jia Wei
  • Hui XuEmail author


A series of factors can be involved in the perioperative period to cause an increase in cancer-related mortality. Unfortunately, volatile anesthesia might aggravate the deleterious effects. In this article, we review the association of diverse volatile anesthetic agents with immune system and cancer cell biology, and examine the effects on angeogenesis and postoperative metastasis or recurrence. Isoflurane, haloflurane and enflurane enhance immunosuppression and upregulate hypoxia-inducible-factor 1 and matrix metalloproteinases, leading to the cancer malignant progression, whereas roles of desflurane and sevoflurane are still unclear. As the effects of volatile anesthetics on tumor immunity have been known, it will be beneficial for using selective drugs into anesthesia and operation in cancer patients.

Key words

volatile anesthesia metastasis recurrence immunosuppression hypoxia-induciblefactor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melamed R, Rosenne E, Shakhar K, et al. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: Suppression by surgery and the prophylactic use of beta-adrenergic and prostaglandin synthesis inhibitor. Brain Behav Immun, 2005,19(2): 114–126CrossRefGoogle Scholar
  2. 2.
    Yang Q, Goding SR, Hokland ME, et al. Antitumor activity of NK cells. Immunol Res, 2006, 36(1-3):13–25CrossRefGoogle Scholar
  3. 3.
    Zamai L, Ponti C, Mirandola P, et al. NK cells and cancer. J Immunol, 2007,178(7):4011–4016CrossRefGoogle Scholar
  4. 4.
    Brittenden J, Heys SD, Ross J, et al. Natural killer cells and cancer. Cancer, 1996,77(7):1226–1243CrossRefGoogle Scholar
  5. 5.
    Ben-Eliyahu S, Page GG, Yirmiya R, et al. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer, 1999,80(6):880–888CrossRefGoogle Scholar
  6. 6.
    Koda K, Saito N, Takiguchi N, et al. Preoperative natural killer cell activity: correlation with distant metastases in curatively research colorectal carcinomas. Int Surg, 1997,82(2):190–193Google Scholar
  7. 7.
    Koda K, Saito N, Oda K, et al. Natural killer cell activity and distant metastasis in rectal cancers treated surgically with and without neoadjuvant chemoradiotherapy. J Am Coll Surg, 2003,197(2):254–260CrossRefGoogle Scholar
  8. 8.
    Schantz SP, Brown BW, Lira E, et al. Evidence for the role of natural immunity in the control of metastatic spread of head and neck cancer, 1987,25(2):141–148Google Scholar
  9. 9.
    Shakhar G, Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol, 1998,160(7):3251–3258Google Scholar
  10. 10.
    Penn I. The effect of immunosuppression on pre-existing cancers. Transplant Proc, 1993, 25(1 Pt 2):1380–1382Google Scholar
  11. 11.
    Tavare AN, Perry NJ, Benzonana LL, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer, 2012,130(6):1237–1250CrossRefGoogle Scholar
  12. 12.
    Loop T, Dovi-Akue D, Frick M, et al. Volatile anesthetics induce caspase-dependent, mitochondriamediated apoptosis in human T lymphocytes in vitro. Anesthesiology, 2005,102(6):1147–1157CrossRefGoogle Scholar
  13. 13.
    Wei H, Liang G, Yang H, et al. The common inhalational anesthetic isofurane induces apoptosis via activation of inositol 1, 4, 5-trisphosphate receptors. Anesthesiology, 2008,108(2):251–260CrossRefGoogle Scholar
  14. 14.
    Woo JH, Baik HJ, Kim CH, et al. Effect of Propofol and Desflurane on Immune Cell Populations in Breast Cancer Patients: A Randomized Trial. J Korean Med Sci, 2015,30(10):1503–8CrossRefGoogle Scholar
  15. 15.
    Kotani N, Hashimoto H, Sessler DI, et al. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology, 1998,89(5):1125–1132CrossRefGoogle Scholar
  16. 16.
    Kotani N, Takahashi S, Sessler DI, et al. Volatile anesthetics augment expression of proinflammatory cytokines in rat alveolar macrophages during mechanical ventilation. Anesthesiology, 1999,91(1):187–197CrossRefGoogle Scholar
  17. 17.
    Kotani N, Hashimoto H, Sessler DI, et al. Expression of genes for proinflammatory cytokines in alveolar macrophages during propofol and isoflurane anesthesia. Anesth Analg, 1999,89(5):1250–1256CrossRefGoogle Scholar
  18. 18.
    Markovic SN, Murasko DM. Anesthesia inhibits interferon-induced natural killer cell cytotoxicity viainduction of CD8+ suppressor cells. Cell Immunol, 1993,151(2):474–480CrossRefGoogle Scholar
  19. 19.
    Tavare AN, Perry NJ, Benzonana LL, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer, 2012,130(6):1237–1250CrossRefGoogle Scholar
  20. 20.
    Melamed R, Bar-Yosef S, Shakhar G, et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg, 2003,97(5):1331–1339CrossRefGoogle Scholar
  21. 21.
    Mitsuhata H, Shimizu R, Yokoyama MM. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharmacol, 1995,17(6):529–534CrossRefGoogle Scholar
  22. 22.
    Flondor M, Hofstetter C, Boost KA, et al. Isoflurane inhalation after induction of endotoxemia in rats attenuates the systemic cytokine response. Eur Surg Res, 2008,40(1):1–6CrossRefGoogle Scholar
  23. 23.
    Pirbudak Cocelli L, Ugur MG, Karadasli H. Comparison of effects of low fow sevofurane and desfurane anesthesia on neutrophil and T-cell populations. Curr Ther Res Clin Exp, 2012, 73(1-2):41–51CrossRefGoogle Scholar
  24. 24.
    Möbert J, Zahler S, Becker BF, et al. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology, 1999,90(5):1372–1381CrossRefGoogle Scholar
  25. 25.
    Kowalski C, Zahler S, Becker BF, et al. Halothane, isoflurane, and sevoflurane reduce postischemic adhesion of neutrophils in the coronary system. Anesthesiology, 1997,86(1):188–195CrossRefGoogle Scholar
  26. 26.
    Heindl B, Reichle FM, Zahler S, et al. Sevoflurane and isoflurane protect the reperfused guinea pig heart by reducing postischemic adhesion of polymorphonuclear neutrophils. Anesthesiology, 1999,91(2):521–530CrossRefGoogle Scholar
  27. 27.
    Cho JS, Lee MH, Kim SI, et al. The Effects of Perioperative Anesthesia and Analgesia on Immune Function in Patients Undergoing Breast Cancer Resection: A Prospective Randomized Study. Int J Med Sci, 2017,14(10):970–976CrossRefGoogle Scholar
  28. 28.
    Tazawa K, Koutsogiannaki S, Chamberlain M, et al. The effect of different anesthetics on tumor cytotoxicity by natural killer cells. Toxicol Lett, 2017,266:23–31CrossRefGoogle Scholar
  29. 29.
    Inada T, Yamanouchi Y, Jomura S, et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia, 2004,59(10):954–959CrossRefGoogle Scholar
  30. 30.
    Deegan CA, Murray D, Doran P, et al. Anesthetic technique and the cytokine and matrix metalloproteinase response to primary breast cancer surgery. Reg Anesth Pain Med, 2010,35(6):490–495CrossRefGoogle Scholar
  31. 31.
    Schneemilch CE, Hachenberg T, Ansorge S, et al. Effects of different anaesthetic agents on immune cell function in vitro. Eur J Anaesthesiol, 2005,22(8):616–623CrossRefGoogle Scholar
  32. 32.
    Goto Y, Ho SL, McAdoo J, et al. General versus regional anaesthesia for cataract surgery: effects on neutrophilapoptosis and the postoperative proinflammatory state. Eur J Anaesthesiol, 2000,17(8):474–480CrossRefGoogle Scholar
  33. 33.
    Oh CS, Lee J, Yoon TG, et al. Effect of Equipotent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesiology, 2018,129(5):921–931CrossRefGoogle Scholar
  34. 34.
    Generali D, Berruti A, Brizzi M, et al. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res, 2006,12(15):4562–4568CrossRefGoogle Scholar
  35. 35.
    Rohwer N, Lobitz S, Daskalow K, et al. HIF-1alpha determines the metastatic potential of gastric cancer cells. Br J Cancer, 2009,100(5):772–781CrossRefGoogle Scholar
  36. 36.
    Dai C, Gao Q, Qiu S, et al. Hypoxia-inducible factor-1 alpha, in association with inflammation, angiogenesis and MYC, is a critical prognostic factor in patients with HCC after surgery. BMC Cancer, 2009,9:418CrossRefGoogle Scholar
  37. 37.
    Baba Y, Nosho K, Shima K, et al. HIF1A Overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol, 2010,176(5):2292–2301CrossRefGoogle Scholar
  38. 38.
    Osada R, Horiuchi A, Kikuchi N, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor1alpha is an independent prognostic factor in ovarian carcinoma. Hum Pathol, 2007,38(9):1310–1320CrossRefGoogle Scholar
  39. 39.
    Unwith S, Zhao H, Hennah L, et al. The potential role of HIF on tumor progression and dissemination. Int J Cancer, 2015,136(11):2491–2503CrossRefGoogle Scholar
  40. 40.
    Huang H, Benzonana LL, Zhao H, et al. Prostate cancer cell malignancy via modulation of HIF-1α pathway with isoflurane and propofol alone and in combination. Br J Cancer, 2014,111(7):1338–1349CrossRefGoogle Scholar
  41. 41.
    Benzonana LL, Perry NJ, Watts HR, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxiainducible factor cellular signaling pathway in vitro. Anesthesiology, 2013,119(3):593–605CrossRefGoogle Scholar
  42. 42.
    Wang C, Weihrauch D, Schwabe D, et al. Extracellular signalregulated kinases trigger isoflurane preconditioning concomitant with upregulation of hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in rats. Anesth Analg, 2006,103(2):281–288CrossRefGoogle Scholar
  43. 43.
    Kawaraguchi Y, Horikawa YT, Murphy AN, et al. Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligandinduced apoptosis via caveolins. Anesthesiology, 2011,115(3):499–508CrossRefGoogle Scholar
  44. 44.
    Kvolik S, Glavas-Obrovac L, Bares V, et al. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci, 2005,77(19):2369–2383CrossRefGoogle Scholar
  45. 45.
    Shi QY, Zhang SJ, Liu L, et al. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro. Br J Anaesth, 2015,114(5):825–830CrossRefGoogle Scholar
  46. 46.
    Ferrell JK, Cattano D, Brown RE, et al. The effects of anesthesia on the morphoproteomic expression of head and neck squamous cell carcinoma: a pilot study. Transl Res, 2015,166(6):674–682CrossRefGoogle Scholar
  47. 47.
    Liang H, Yang CX, Zhang B, et al. Sevoflurane suppresses hypoxia-induced growth and metastasis of lung cancer cells via inhibiting hypoxia-inducible factor-1α. J Anesth, 2015,29(6):821–830CrossRefGoogle Scholar
  48. 48.
    Iwasaki M, Zhao H, Jaffer T, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget, 2016,7(18):26042–26056CrossRefGoogle Scholar
  49. 49.
    Luo X, Zhao H, Hennah L, et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro. Br J Anaesth, 2015,114(5):831–839CrossRefGoogle Scholar
  50. 50.
    Müller-Edenborn B, Roth-Zgraggen B, Bartnicka K, et al. Volatile anesthetics reduce invasion of colorectal cancer cells through down-regulation of matrix metalloproteinase-9. Anesthesiology, 2012,117(2):293–301CrossRefGoogle Scholar
  51. 51.
    Bonello S, Za¨hringer C, BelAiba R, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol, 2007,27(4):755–761CrossRefGoogle Scholar
  52. 52.
    Maranchie J, Zhan Y. Nox4 is critical for hypoxiainducible factor 2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res, 2005,65(20):9190–9193CrossRefGoogle Scholar
  53. 53.
    Müllenheim J, Ebel D, Frässdorf J, et al. Isoflurane preconditions myocardium against infarction via release of free radicals. Anesthesiology, 2002,96(4):934–940CrossRefGoogle Scholar
  54. 54.
    Hanouz J, Zhu L, Lemoine S, et al. Reactive oxygen species mediate sevoflurane-and desflurane-induced preconditioning in isolated human right atria in vitro. Anesth Analg, 2007,105(6):1534–1539CrossRefGoogle Scholar
  55. 55.
    Looney M, Doran P, Buggy DJ. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor beta in women undergoing anesthesia and surgery for breast cancer. Anesthesiology, 2010,113(5):1118–1125CrossRefGoogle Scholar
  56. 56.
    Iwasaki M, Zhao H, Jaffer T, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget, 2016,7(18):26042–26056CrossRefGoogle Scholar
  57. 57.
    Jun IJ, Jo JY, Kim JI, et al. Impact of anesthetic agents on overall and recurrence-free survival in patients undergoing esophageal cancer surgery: A retrospective observational study. Sci Rep, 2017,7(1):14020CrossRefGoogle Scholar
  58. 58.
    Shapiro J, Jersky J, Katzav S, et al. Anesthetic drugs accelerate the progression of postoperative metastases of mouse tumors. J Clin Invest, 1981,68(3):678–685CrossRefGoogle Scholar
  59. 59.
    Moudgil GC, Singal DP. Halothane and isoflurane enhance melanoma tumour metastasis in mice. Can J Anaesth, 1997,44(1):90–94CrossRefGoogle Scholar
  60. 60.
    Elias KM, Kang S, Liu X, et al. Anesthetic selection and disease-free survival following optimal primary cytoreductive surgery for stage III epithelial ovarian cancer. Ann Surg Oncol, 2015,22(4):1341–1348CrossRefGoogle Scholar
  61. 61.
    Liang H, Yang CX, Zhang B, et al. Sevoflurane attenuates platelets activation of patients undergoing lung cancer surgery and suppresses platelets-induced invasion of lung cancer cells. J Clin Anesth, 2016,35:304–312CrossRefGoogle Scholar
  62. 62.
    Ecimovic P, McHugh B, Murray D, et al. Effects of sevofurane on breast cancer cell function in vitro. Anticancer Res, 2013,33(10):4255–4260Google Scholar
  63. 63.
    Deegan CA, Murray D, Doran P, et al. Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro. Br J Anaesth, 2009,103(5):685–690CrossRefGoogle Scholar

Copyright information

© Huazhong University of Science and Technology 2018

Authors and Affiliations

  • Bo Jiao
    • 1
  • Chun Yang
    • 1
  • Nian-nian Huang
    • 1
  • Ning Yang
    • 1
  • Jia Wei
    • 2
  • Hui Xu
    • 1
    Email author
  1. 1.Department of Anesthesiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Gynaecology and Obstetrics, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations