Current Medical Science

, Volume 38, Issue 6, pp 941–948 | Cite as

Computer-assisted Surgery for Scaphoid Fracture

  • Zi-run Xiao
  • Ge XiongEmail author


The computer-assisted surgery (CAS) has significantly improved the accuracy, reliability and outcomes of traumatic, spinal, nerve surgery and many other operations with a less invasive way. The application of CAS for scaphoid fractures remains experimental. The related studies are scanty and most of them are cadaver researches. Some intrinsic defects from the registration procedure, scan and immobilization of limbs may inevitably result in deviations. Some deviations become more obvious with operations of small bones (such as scaphoid) although they are acceptable for spine and other orthopedic surgeries. We reviewed the current literatures on the applications of CAS for scaphoid operation and summarized technical principles, scan and registration methods, immobilization of limbs and their outcomes. On the basis of the data, we analyzed the limitations of this technique and envisioned its future development.

Key words

computer-assisted surgery wrist scaphoid fracture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hove LM. Fractures of the hand. Distribution and relative incidence. Scand J PlastReconstr Surg Hand Surg, 1993,27(4):317–319CrossRefGoogle Scholar
  2. 2.
    van Onselen EB, Karim RB, Hage JJ, et al. Prevalence and distribution of hand fractures. J Hand Surg Br, 2003,28(5):491–495CrossRefGoogle Scholar
  3. 3.
    Hey HW, Chong AK, Murphy D. Prevalence of carpal fracture in Singapore. J Hand Surg Am, 2011,36(2):2782–83Google Scholar
  4. 4.
    Wu WC. Percutaneous cannulated screw fixation of acute scaphoid fractures. Hand Surg, 2002,7(2):271–278CrossRefGoogle Scholar
  5. 5.
    Bond CD, Shin AY, McBride MT, et al. Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures. J Bone Joint Surg Am, 2001, 83-A(4):483–488CrossRefGoogle Scholar
  6. 6.
    Garcia RM, Ruch DS. Management of scaphoid fractures in the athlete: open and percutaneous fixation. Sports Med Arthrosc Rev, 2014,22(1):22–28CrossRefGoogle Scholar
  7. 7.
    Dodds SD, Panjabi MM, Slade JF 3rd. Screw fixation of scaphoid fractures: a biomechanical assessment of screw length and screw augmentation. J Hand Surg Am, 2006,31(3):405–413CrossRefGoogle Scholar
  8. 8.
    Yamamura M, Nakamura N, Miki H, et al. Cement Removal from the Femur Using the ROBODOC System in Revision Total Hip Arthroplasty. Adv Orthop, 2013,2013:347358CrossRefGoogle Scholar
  9. 9.
    Liow MH, Chin PL, Tay KJ, et al. Early experiences with robot-assisted total knee arthroplasty using the DigiMatch™ ROBODOC® surgical system. Singapore Med J, 2014,55(10):529–534CrossRefGoogle Scholar
  10. 10.
    Karthik K, Colegate-Stone T, Dasgupta P, et al. Robotic surgery in trauma and orthopaedics: a systematic review. Bone Joint J, 2015, 97-B(3):292–299CrossRefGoogle Scholar
  11. 11.
    Chachan S, Bin AbdRazak HR, Loo WL, et al. Cervical pedicle screw instrumentation is more reliable with O-arm-based 3D navigation: analysis of cervical pedicle screw placement accuracy with O-arm-based 3D navigation. Eur Spine J, 2018, doi: 10.1007/s00586-018-5585-1Google Scholar
  12. 12.
    Arab A, Alkherayf F, Sachs A, et al. Use of 3D Navigation in Subaxial Cervical Spine Lateral Mass Screw Insertion. J Neurol Surg Rep, 2018,79(1):e1–e8CrossRefGoogle Scholar
  13. 13.
    Adamczak SE, Bova FJ, Hoh DJ. Intraoperative 3D Computed Tomography: Spine Surgery. Neurosurg Clin N Am, 2017,28(4):585–594CrossRefGoogle Scholar
  14. 14.
    Klingler JH, Sircar R, Scheiwe C, et al. Comparative Study of C-Arms for Intraoperative 3-dimensional Imaging and Navigation in Minimally Invasive Spine Surgery Part II: Radiation Exposure. Clin Spine Surg, 2017, 30(6):E669–E676CrossRefGoogle Scholar
  15. 15.
    Jung WS, Jung JH, Chung US, et al. Spatial measurement for safe placement of screws within the scaphoid using three-dimensional analysis. J Plast Surg Hand Surg, 2011,45(1):40–44.CrossRefGoogle Scholar
  16. 16.
    Adams BD, Blair WF, Reagan DS, et al. Technical factors related to Herbert screw fixation. J Hand Surg Am, 1988,13(6):893–899CrossRefGoogle Scholar
  17. 17.
    Ford DJ, Khoury G, el-Hadidi S, et al. The Herbert screw for fractures of the scaphoid. A review of results and technical difficulties. J Bone Joint Surg Br, 1987,69(1):124–127CrossRefGoogle Scholar
  18. 18.
    Smith EJ, Ellis RE, Pichora DR. Computer-assisted percutaneous scaphoid fixation: concepts and evolution. J Wrist Surg, 2013,2(4):299–305CrossRefGoogle Scholar
  19. 19.
    Nakagawa H, Kamimura M, Uchiyama S, et al. The accuracy and safety of image-guidance system using intraoperative fluoroscopic images: an in vitro feasibility study. J Clin Neurosci, 2003,10(2):226–230CrossRefGoogle Scholar
  20. 20.
    Smith EJ, Allan G, Gammon B, et al. Investigating the performance of a wrist stabilization device for imageguided percutaneous scaphoid fixation. Int J Comput Assist Radiol Surg, 2014,9(2):155–164CrossRefGoogle Scholar
  21. 21.
    Niederwanger C, Widmann G, Knoflach M, et al. Kirschner wire placement in scaphoid bones using intraoperative CT-guided stereotaxy. Minim Invasive Ther Allied Technol, 2013,22(3):165–170CrossRefGoogle Scholar
  22. 22.
    Liverneaux PA, Gherissi A, Stefanelli MB. Kirschner wire placement in scaphoid bones using fluoroscopic navigation: a cadaver study comparing conventional techniques with navigation. Int J Med Robot, 2008,4(2):165–173CrossRefGoogle Scholar
  23. 23.
    Citak M, O’Loughlin PF, Kendoff D, et al. Navigated scaphoid screw placement using customized scaphoid splint: an anatomical study. Arch Orthop Trauma Surg, 2010,130(7):889–895CrossRefGoogle Scholar
  24. 24.
    Song EK, Seon JK, Yim JH, et al. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res, 2013,471(1):118–126CrossRefGoogle Scholar
  25. 25.
    Nakamura N, Sugano N, Nishii T, et al. A comparison between robotic-assisted and manual implantation of cementless total hip arthroplasty. Clin Orthop Relat Res, 2010,468(4):1072–1081CrossRefGoogle Scholar
  26. 26.
    Merloz P, Tonetti J, Pittet L, et al. Computer-assisted spine surgery. Comput Aided Surg, 1998,3(6):297–305CrossRefGoogle Scholar
  27. 27.
    Amiot LP, Lang K, Putzier M, et al. Comparative results between conventional and computer-assisted pedicle screw installation in the thoracic, lumbar, and sacral spine. Spine, 2000,25(5):606–614CrossRefGoogle Scholar
  28. 28.
    Kam CC, Greenberg JA. Computer-assisted navigation for dorsal percutaneous scaphoid screw placement: a cadaveric study. J Hand Surg Am, 2014,39(4):613–620CrossRefGoogle Scholar
  29. 29.
    Beek M, Abolmaesumi P, Luenam S, et al. Validation of a new surgical procedure for percutaneous scaphoid fixation using intra-operative ultrasound. Med Image Anal, 2008,12(2):152–162CrossRefGoogle Scholar
  30. 30.
    bu Anas EM, Seitel A, Rasoulian A, et al. Bone enhancement in ultrasound using local spectrum variations for guiding percutaneous scaphoid fracture fixation procedures. Int J Comput Assist Radiol Surg, 2015,10(6):959–969CrossRefGoogle Scholar
  31. 31.
    Anas EM, Seitel A, Rasoulian A, et al. Registration of a statistical model to intraoperative ultrasound for scaphoid screw fixation. Int J Comput Assist Radiol Surg, 2016,11(6):957–965CrossRefGoogle Scholar
  32. 32.
    Dagnino G, Georgilas I, Morad S, et al. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery. Int J Comput Assist Radiol Surg, 2017,12(8):1383–1397CrossRefGoogle Scholar
  33. 33.
    Walsh E, Crisco JJ, Wolfe SW. Computer-assisted navigation of volar percutaneous scaphoid placement. J Hand Surg Am, 2009,34(9):1722–1728CrossRefGoogle Scholar
  34. 34.
    Catala-Lehnen P, Nüchtern JV, Briem D, et al. Comparison of 2D and 3D navigation techniques for percutaneous screw insertion into the scaphoid: results of an experimental cadaver study. Comput Aided Surg, 2011,16(6):280–287CrossRefGoogle Scholar
  35. 35.
    Smith EJ, Oentoro A, Al-Sanawi H, et al. Calibration and use of intraoperative cone-beam computed tomography: an in-vitro study for wrist fracture. Med Image Comput Comput Assist Interv, 2010,13(3):359–366Google Scholar
  36. 36.
    Smith EJ, Al-Sanawi H, Gammon B, et al. Volume rendering of three-dimensional fluoroscopic images for percutaneous scaphoid fixation: an in vitro study. Proc Inst Mech Eng H, 2013,227(4):384–392CrossRefGoogle Scholar
  37. 37.
    Ma L, Jiang W, Zhang B, et al. Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement. Med Biol Eng Comput, 2018, doi: 10.1007/s11517-018-1861-9Google Scholar
  38. 38.
    Sternheim A, Kashigar A, Daly M, et al. Cone-Beam Computed Tomography-Guided Navigation in Complex Osteotomies Improves Accuracy at All Competence Levels: A Study Assessing Accuracy and Reproducibility of Joint-Sparing Bone Cuts. J Bone Joint Surg Am, 2018,100(10):e67CrossRefGoogle Scholar
  39. 39.
    Hohenforst-Schmidt W, Zarogoulidis P, Vogl T, et al. Cone Beam Computertomography (CBCT) in Interventional Chest Medicine -High Feasibility for Endobronchial Realtime Navigation. J Cancer, 2014,5(3):231–241CrossRefGoogle Scholar
  40. 40.
    Smith EJ, Al-Sanawi HA, Gammon B, et al. Volume slicing of cone-beam computed tomography images for navigation of percutaneous scaphoid fixation. Int J Comput Assist Radiol Surg, 2012,7(3):433–444CrossRefGoogle Scholar
  41. 41.
    Chan KW, McAdams TR. Central screw placement in percutaneous screw scaphoid fixation: a cadaveric comparison of proximal and distal techniques. J Hand Surg Am, 2004,29(1):74–79CrossRefGoogle Scholar
  42. 42.
    Soubeyrand M, Biau D, Mansour C, et al. Comparison of percutaneous dorsal versus volar fixation of scaphoid waist fractures using a computer model in cadavers. J Hand Surg Am, 2009,34(10):1838–1844CrossRefGoogle Scholar
  43. 43.
    Xiao Z, Xiong G, Zhang W. New findings about the intrascaphoid arterial system. J Hand Surg Eur Vol, 2018, doi: 10.1177/1753193418758890Google Scholar
  44. 44.
    Schwarcz Y, Schwarcz Y, Peleg E, et al. Three-Dimensional Analysis of Acute Scaphoid Fracture Displacement: Proximal Extension Deformity of the Scaphoid. J Bone Joint Surg Am, 2017,99(2):141–149CrossRefGoogle Scholar
  45. 45.
    Cooney WP 3rd, Dobyns JH, Linscheid RL. Nonunion of the scaphoid: analysis of the results from bone grafting. J Hand Surg Am, 1980,5(4):343–354CrossRefGoogle Scholar
  46. 46.
    Meisel E, Seal A, Yao CA, et al. Management of scaphoid nonunion with iliac crest bone graft and K-wire fixation. Eur J Orthop Surg Traumatol, 2017,27(1):23–31CrossRefGoogle Scholar
  47. 47.
    Brogan DM, Moran SL, Shin AY. Outcomes of open reduction and internal fixation of acute proximal pole scaphoid fractures. Hand, 2015,10(2):227–232CrossRefGoogle Scholar
  48. 48.
    Luchetti TJ, Hedroug Y, Fernandez JJ, et al. The morphology of proximal pole scaphoid fractures: implications for optimal screw placement. J Hand Surg Eur Vol, 2018,43(1):73–79CrossRefGoogle Scholar
  49. 49.
    Yin HW, Xu J, Xu WD. 3-Dimensional Printing-Assisted Percutaneous Fixation for Acute Scaphoid Fracture: 1-Shot Procedure. J Hand Surg Am, 2017, 42(4):301.e1–301.e5CrossRefGoogle Scholar
  50. 50.
    Schöll H, Mentzel M, Jones A, et al. Image guidance can support scaphoid K-wire insertion: an experimental study and initial clinical experience. Int J Comput Assist Radiol Surg, 2013,8(3):471–80CrossRefGoogle Scholar
  51. 51.
    Hoffmann M, Reinsch OD, Petersen JP, et al. Percutaneous antegrade scaphoid screw placement: a feasibility and accuracy analysis of a novel electromagnetic navigation technique versus a standard fluoroscopic method. Int J Med Robot, 2015,11(1):52–57CrossRefGoogle Scholar
  52. 52.
    Pichler W, Windisch G, Schaffler G, et al. Computerassisted 3-dimensional anthropometry of the scaphoid. Orthopedics, 2010,33(2):85–88CrossRefGoogle Scholar
  53. 53.
    Bartlett JD, Lawrence JE, Khanduja V. Virtual reality hip arthroscopy simulator demonstrates sufficient face validity. Knee Surg Sports Traumatol Arthrosc, 2018, doi:10.1007/s00167-018-5038-8Google Scholar
  54. 54.
    LeBlanc J, Hutchison C, Hu Y, et al. A comparison of orthopaedic resident performance on surgical fixation of an ulnar fracture using virtual reality and synthetic models. J Bone Joint Surg Am, 2013,95(9):e60, S1-S5CrossRefGoogle Scholar
  55. 55.
    Arikatla VS, Tyagi M, Enquobahrie A, et al. High Fidelity Virtual Reality Orthognathic Surgery Simulator. Proc SPIE Int Soc Opt Eng, 2018, doi: 10.1117/12.2293690Google Scholar
  56. 56.
    Ma L, Jiang W, Zhang B, et al. Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement. Med Biol Eng Comput, 2018, doi: 10.1007/s11517-018-1861-9Google Scholar

Copyright information

© Huazhong University of Science and Technology 2018

Authors and Affiliations

  1. 1.Department of Hand SurgeryBeijing Jishuitan HospitalBeijingChina
  2. 2.Department of Orthopaedic Surgerythe 91st Central Hospital of Chinese People’s Liberation ArmyHenanChina

Personalised recommendations