Advertisement

Magnetic Fe3O4@mTiO2-AIPA Microspheres for Separation of Phosphoproteins and Non-phosphoproteins

  • Qiuhan Tang (汤秋菡)
  • Rui Zhao
  • Qi Lu (陆琦)Email author
  • Guangyan Qing (卿光焱)Email author
Biomaterials
  • 1 Downloads

Abstract

A novel phosphoprotein separation material was developed, which is constructed by a magnetic mesoporous Fe3O4@TiO2 (Fe3O4@mTiO2) microsphere and a 5-aminoisophthalic acid (AIPA) monolayer that provides additional binding sites toward phosphate groups. The results of characteristic experiments demonstrated that Fe3O4@mTiO2-AIPA had good dispersability, high magnetic susceptibility, and satisfactory grafting ratio of AIPA, ascribed to the large specific surface area of the inorganic substrate. Taking advantages of these features, Fe3O4@mTiO2-AIPA was successfully utilized to separate α-casein (a typical phosphoprotein) and bovine serum albumin (BSA, a typical non-phosphoprotein) from their mixtures (molar ratio = 1:2). Through adjusting pH and polarity of solutions, the BSA and α-casein were respectively enriched in washing fraction and elution fraction. This result displays the good potential of Fe3O4@mTiO2-AIPA for application in phosphoprotein enrichment.

Key words

magnetic microsphere phosphoprotein separation α-casein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bannister AJ, Kouzarides T. Regulation of Chromatin by Histone Modifications[J]. Cell Res., 2011, 21(3): 381–395CrossRefGoogle Scholar
  2. [2]
    Grimsrud PA, Swaney DL, Wenger CD, et al. Phosphoproteomics for the Masses[J]. ACS Chem. Biol., 2010, 5(1): 105–119CrossRefGoogle Scholar
  3. [3]
    Graves JD, Krebs EG. Protein Phosphorylation and Signal Transduction[J]. Pharmacol. Ther., 1999, 82(2–3): 111–121CrossRefGoogle Scholar
  4. [4]
    Gong CX, Singh TJ, Grundke-Igbal I, et al. Alzheimer’s Disease Abnormally Phosphorylated τ Is Dephosphorylated by Protein Phosphatase-2B (Calcineurin)[J]. J. Neurochem., 1994, 62(2): 803–806CrossRefGoogle Scholar
  5. [5]
    Solari FA, Dell’Aica M, Sickmann A, et al. Why Phosphoproteomics Is Still a Challenge[J]. Mol. BioSyst., 2015, 11(6): 1 487–1 493CrossRefGoogle Scholar
  6. [6]
    Engholm-Keller K, Larsen MR. Technologies and Challenges in Large-Scale Phosphoproteomics[J]. Proteomics, 2013, 13(6): 910–931CrossRefGoogle Scholar
  7. [7]
    Hou J, Xie Z, Xue P, et al. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix[J]. J. Biomed. Biotechnol., 2010: 759 690Google Scholar
  8. [8]
    Xiong Z, Chen Y, Zhang L, et al. Facile Synthesis of Guanidyl-Functionalized Magnetic Polymer Microspheres for Tunable and Specific Capture of Global Phosphopeptides or Only Multiphosphopeptides[J]. ACS Appl. Mater. Interfaces, 2014, 6(24): 22 743–22 750CrossRefGoogle Scholar
  9. [9]
    Wu S, Lourette NM, Tolic N, et al. An Integrated Top-Down and Bottom-Up Strategy for Broadly Characterizing Protein Isoforms and Modifications[J]. J. Proteome Res., 2009, 8(3): 1 347–1 357CrossRefGoogle Scholar
  10. [10]
    Chait BT. Mass Spectrometry: Bottom-Up or Top-Down?[J]. Science, 2006, 314(5 796): 65–66CrossRefGoogle Scholar
  11. [11]
    Delom F, Chevet E. Phosphoprotein Analysis: from Proteins to Proteomes[J]. Proteome Sci., 2006, 4: 15CrossRefGoogle Scholar
  12. [12]
    Yates JR, Ruse CI, Nakorchevsky A. Proteomics by Mass Spectrometry: Approaches, Advances, and Applications[J]. Annu. Rev. Biomed. Eng., 2009, 11: 49–79CrossRefGoogle Scholar
  13. [13]
    Han X, Wang Y, Aslanian A, et al. Sheathless Capillary Electrophoresis-Tandem Mass Spectrometry for Top-Down Characterization of Pyrococcus Furiosus Proteins on a Proteome Scale[J]. Anal. Chem., 2014, 86(22): 11 006–11 012CrossRefGoogle Scholar
  14. [14]
    Siuti N, Kelleher NL. Decoding Protein Modifications Using Top-Down Mass Spectrometry[J]. Nat Methods., 2007, 4(10): 817–821CrossRefGoogle Scholar
  15. [15]
    Waanders LF, Hanke S, Mann M. Top-Down Quantitation and Characterization of SILAC-Labeled Proteins[J]. J. Am. Soc. Mass Spectrom., 2007, 18(11): 2 058–2 064CrossRefGoogle Scholar
  16. [16]
    Tran JC, Zamdborg L, Ahlf DR, et al. Mapping Intact Protein Isoforms in Discovery Mode Using Top-Down Proteomics[J]. Nature, 2011, 480(7 376): 254–258CrossRefGoogle Scholar
  17. [17]
    Schmidt SR, Schweikart F, Andersson ME. Current Methods for Phosphoprotein Isolation and Enrichment[J]. J. Chromatogr. B, 2007, 849(1–2): 154–162CrossRefGoogle Scholar
  18. [18]
    Hwang L, Ayaz-Guner S, Gregorich ZR, et al. Specific Enrichment of Phosphoproteins Using Functionalized Multivalent Nanoparticles[J]. J. Am. Chem. Soc., 2015, 137(7): 2 432–2 243CrossRefGoogle Scholar
  19. [19]
    Liu H, Yang T, Dai J, et al. Hydrophilic Modification of Titania Nano-materials as a Biofunctional Adsorbent for Selective Enrichment of Phosphopeptides[J]. Analyst, 2015, 140(19): 6 652–6 659CrossRefGoogle Scholar
  20. [20]
    Yan YH, Zhang XM, Deng CH. Designed Synthesis of Titania Nanoparticles Coated Hierarchially Ordered Macro/Mesoporous Silica for Selective Enrichment of Phosphopeptides[J]. ACS Appl. Mater. Interfaces, 2014, 6(8): 5 467–5 471CrossRefGoogle Scholar
  21. [21]
    Li Y, Xu X, Qi D, et al. Novel Fe3O4@TiO2 Core-Shell Microspheres for Selective Enrichment of Phosphopeptides in Phosphoproteome Analysis[J]. J. Proteome Res., 2008, 7(6): 2 526–2 538CrossRefGoogle Scholar
  22. [22]
    Mann M, Ong SE, Gronborg M, et al. Analysis of Protein Phosphorylation Using Mass Spectrometry: Deciphering the Phosphoproteome[J]. Trends Biotechnol., 2002, 20(6): 261–268CrossRefGoogle Scholar
  23. [23]
    Tang J, Yin P, Lu X, et al. Development of Mesoporous TiO2 Microspheres with High Specific Surface Area for Selective Enrichment of Phosphopeptides by Mass Spectrometric Analysis[J]. J. Chromatogr. A, 2010, 1217(15): 2 197–2 205CrossRefGoogle Scholar
  24. [24]
    Qing G, Wang X, Jiang L, et al. Saccharide-Sensitive Wettability Switching on a Smart Polymer Surface[J]. Soft Matter., 2009, 5(14): 2 759–2 765CrossRefGoogle Scholar
  25. [25]
    Liu S, Kang J, Cao X, et al. Acylthiourea Derivatives as Colorimetric Sensors for Anions: Synthesis, Characterization and Spectral Behaviors[J]. Spectrochim. Acta, Part A, 2016, 153: 471–477CrossRefGoogle Scholar
  26. [26]
    Nishio T, Ayano E, Suzuki Y, et al. Separation of Phosphorylated Peptides Utilizing Dual pH- and Temperature-Responsive Chromatography[J]. J. Chromatogr. A, 2011, 1218(15): 2 079–2 084CrossRefGoogle Scholar
  27. [27]
    Lu L, Li W, Wang G, et al. Synthesis and Characterization of Biomimetic Fe3O4/Coke Magnetic Nanoparticles Composite Material[J]. J. Wuhan Univ. Technol., -Mater Sci. Ed., 2016, 31(2): 254–259CrossRefGoogle Scholar
  28. [28]
    Ren Q, Chu H, Chen M, et al. Design and Fabrication of Superparamaganitic Hybrid Microspheres for Protein Immobilization[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2011, 26(6): 1 084–1 088CrossRefGoogle Scholar
  29. [29]
    Chen CT, Chen YC. Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry[J]. Anal. Chem., 2005, 77(18): 5 912–5 919CrossRefGoogle Scholar
  30. [30]
    Deng H, Li X, Peng Q, et al. Monodisperse Magnetic Single-Crystal Ferrite Microspheres[J]. Angew. Chem. Int. Ed., 2005, 44(18): 2 782–2 785CrossRefGoogle Scholar
  31. [31]
    Wang P, Chen D, Tang FQ. Preparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis[J]. Langmuir, 2006, 22(10): 4 832–4 835CrossRefGoogle Scholar
  32. [32]
    Gelb LD, Gubbins KE. Characterization of Porous Glasses: Simulation Models, Adsorption Isotherms, and the Brunauer-Emmett-Teller Analysis Method[J]. Langmuir, 1998, 14(8): 2 097–2 111CrossRefGoogle Scholar
  33. [33]
    Ojeda ML, Esparza JM, Campero A, et al. On Comparing BJH and NLDFT Pore-Size Distributions Determined from N2 Sorption on SBA-15 Substrata[J]. Phys. Chem. Chem. Phys., 2003, 5(9): 1 859–1 866CrossRefGoogle Scholar
  34. [34]
    Xu H, Zhang Y, Niu X, et al. Preparation and in vitro Release Properties of Mercaptopurine Drug-loaded Magnetic Microspheres[J]. J. Wuhan Univ. Technol.,-Mater. Sci. Ed., 2013, 28 (6): 1 231–1 235CrossRefGoogle Scholar
  35. [35]
    Li C, Younesi R, Cai Y, et al. Photocatalytic and Antibacterial Properties of Au-Decorated Fe3O4@mTiO2 Core-Shell Microspheres[J]. Appl. Catal., B, 2014, 156–157: 314–322CrossRefGoogle Scholar
  36. [36]
    Song H, Ma X, Xiong F, et al. Preparation and Evaluation of Insulin-Loaded Nanoparticles based on Hydroxypropyl-β-Cyclodextrin Modifed Carboxymethyl Chitosan for Oral Delivery[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2016, 31(6): 1 394–1 400CrossRefGoogle Scholar
  37. [37]
    Jin WH, Dai J, Li SJ, et al. Human Plasma Proteome Analysis by Multidimensional Chromatography Prefractionation and Linear Ion Trap Mass Spectrometry Identification[J]. J. Proteome Res., 2005, 4(2): 613–619CrossRefGoogle Scholar
  38. [38]
    Canas B, Pineiro C, Calvo E, et al. Trends in Sample Preparation for Classical and Second Generation Proteomics[J]. J. Chromatogr. A, 2007, 1153(1–2): 235–258CrossRefGoogle Scholar
  39. [39]
    Wuhrer M, Deelder AM, Hokke CH. Protein Glycosylation Analysis by Liquid Chromatography-Mass Spectrometry[J]. J. Chromatogr. B, 2005, 825(2): 124–133CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry, Chemical Engineering and Life ScienceWuhan University of TechnologyWuhanChina
  2. 2.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  3. 3.Research & Development CenterJushi Group Co., LtdTongxiangChina

Personalised recommendations