Dynamic Tensile Behavior and Constitutive Modeling of TC21 Titanium Alloy

  • Yunfei Li (李云飞)Email author
  • Xiangguo Zeng
Metallic Materials


The dynamic tensile behaviors of a newly developed Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy (referred as TC21 in China) over a wide range of strain rates from quasi-static to dynamic regimes (0.001–1 200 s−1) at different temperatures were experimentally investigated. A split Hopkinson tension bar apparatus and a static material testing system were utilized to study the stress-strain responses under uniaxial tension loading condition. The experimental results indicate that the tensile behavior of TC21 titanium alloy is dependent on the strain rate and temperature. The values of initial yield stress increase with increasing strain rate and decreasing temperature. The effects of strain rate and temperature on the initial yield behavior are estimated by introducing two sensitivity parameters. The phenomenological-based constitutive model, Johnson-Cook model, is suitably modified to describe the rate-temperature dependent constitutive behavior of TC21 titanium alloy. It is observed that the modified model is in good agreement with the experimental data subjected to the investigated range of strain rates and temperatures.

Key words

two-phase titanium alloy dynamic tensile behavior rate-temperature sensitivity constitutive modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gysler A, Lütjering G. Influence of Test Temperature and Microstructure on the Tensile Properties of Titanium Alloys[J]. Metall. Trans. A, 1982, 13(8): 1 435–1 443CrossRefGoogle Scholar
  2. [2]
    Reed-Hill R E, Iswaran C V, Kaufman M J. An Analysis of the Flow Stress of a Two- phase Alloy System Ti-6Al-4V[J]. Metall. Mater. Trans. A, 1996, 27(12): 3 957–3 962CrossRefGoogle Scholar
  3. [3]
    Majorell A, Srivatsa S, Picu R C. Mechanical Behavior of Ti-6Al-4V at High and Moderate Temperatures-Part I: Experimental Results[J]. Mat. Sci. Eng. A, 2002, 326(2): 297–305CrossRefGoogle Scholar
  4. [4]
    Zong Y Y, Shan D B, Xu M, et al. Flow Softening and Microstructural Evolution of TC11 Titanium Alloy during Hot Deformation[J]. J. Mater. Process. Tech., 2009, 209(4): 1 988–1 994CrossRefGoogle Scholar
  5. [5]
    McEldowney D J, Tamirisakandala S, Miracle D B. Heat-treatment Effects on the Microstructure and Tensile Properties of Powder Metallurgy Ti-6Al-4V Alloys Modified with Boron[J]. Metall. Mater. Trans. A, 2010, 41(4): 1 003–1 015CrossRefGoogle Scholar
  6. [6]
    Zhang X Y, Li M Q, Li H, et al. Deformation Behavior in Isothermal Compression of the TC11 Titanium Alloy[J]. Mater. Des., 2010, 31(6): 2 851–2 857CrossRefGoogle Scholar
  7. [7]
    Sun Q J, Wang G C, Li M Q. The Super Plasticity and Microstructure Evolution of TC11 Titanium Alloy[J]. Mater. Des., 2011, 32(7): 3 893–3 899CrossRefGoogle Scholar
  8. [8]
    Littlewood P D, Wilkinson A J. Local Deformation Patterns in Ti-6Al-4V under Tensile, Fatigue and Dwell Fatigue Loading[J]. Int. J. Fatigue, 2012, 43: 111–119CrossRefGoogle Scholar
  9. [9]
    Gu Y, Zeng F H, Qi Y L, et al. Tensile Creep Behavior of Heat-treated TC11 Titanium Alloy at 450–550 °C[J]. Mater Sci. Eng. A, 2013, 575: 74–85CrossRefGoogle Scholar
  10. [10]
    Park C H, Kim J H, Hyun Y T, et al. The Origins of Flow Softening during High-temperature Deformation of a Ti-6Al-4V Alloy with a Lamellar Microstructure[J]. J. Alloys Compd., 2014, 582: 126–129CrossRefGoogle Scholar
  11. [11]
    Follansbee P S, Gray G T. An Analysis of the Low Temperature, Low and High Strain-rate Deformation of Ti-6Al-4V[J]. Metall. Trans. A, 1989, 20(5): 863–874CrossRefGoogle Scholar
  12. [12]
    Silva M G, Ramesh K T. The Rate-dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V[J]. Mater. Sci. Eng. A, 1997, 232(1–2): 11–22CrossRefGoogle Scholar
  13. [13]
    Lee W S, Lin C F. Plastic Deformation and Fracture Behavior of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures[J]. Mater. Sci. Eng. A, 1998, 241(1–2): 48–59CrossRefGoogle Scholar
  14. [14]
    Chichili D R, Ramesh K T, Hemker K J. The High-strain-rate Response of Alpha-titanium: Experiments, Deformation Mechanisms and Modeling[J]. Acta Mater, 1998, 46(3): 1 025–1 043CrossRefGoogle Scholar
  15. [15]
    Nemat-Nasser S, Guo W G, Nesterenko V F, et al. Dynamic Response of Conventional and Hot Isostatically Pressed Ti-6Al-4V Alloys: Experiments and Modeling[J]. Mech. Mater, 2001, 33(8): 425–439CrossRefGoogle Scholar
  16. [16]
    Lee D G, Lee S, Lee C S, et al. Effects of Micro Structural Factors on Quasi-static and Dynamic Deformation Behaviors of Ti-6Al-4V Alloys with Widmanstätten Structures[J]. Metall. Mater Trans. A, 2003, 34(11): 2 541–2 548CrossRefGoogle Scholar
  17. [17]
    Khan A, Kazmi R, Farrokh B, et al. Effect of Oxygen Content and Micro-structure on the Thermo-mechanical Response of Three Ti-6Al-4V Alloys: Experiments and Modeling over a Wide Range of Strain-rates and Temperatures[J]. Int. J. Plasticity, 2007, 23(7): 1 105–1 125CrossRefGoogle Scholar
  18. [18]
    Luntz R D, Griffin R M, Green S J, et al. High-strain-rate Tests on Titanium 6-6-2 Utilizing a Unique Rate-testing Machine[J]. Exp. Mech., 1975, 15(10): 396–402CrossRefGoogle Scholar
  19. [19]
    Fundenberger J J, Philippe M J, Wagner F, et al. Modeling and Prediction of Mechanical Properties for Materials with Hexagonal Symmetry (Zinc, Titanium and Zirconium Alloys)[J]. Acta Mater, 1997, 45: 4 041–4 055CrossRefGoogle Scholar
  20. [20]
    Gall K, Sehitoglu H, Chumlyakov Y I, et al. Tension-compression Asymmetry of the Stress-strain Response in Aged Single Crystal and Polycrystalline NiTi[J]. Acta. Mater, 1999, 47(4): 1 203–1 217CrossRefGoogle Scholar
  21. [21]
    Williams J C, Baggerly R G, Paton N E. Deformation Behavior of HCP Ti-Al Single Crystals[J]. Metall. Mater Trans. A, 2002, 33(13): 837–850CrossRefGoogle Scholar
  22. [22]
    Cheng S, Spencer J A, Milligan W W. Strength and Tension/compression Asymmetry in Nanostructured and Ultra Fine-grain Metals[J]. Acta Mater, 2003, 51(15): 4 505–4 518CrossRefGoogle Scholar
  23. [23]
    Macdougall D A S, Harding J. A Constitutive Relation and Failure Criterion for Ti-6Al-4V Alloy at Impact Rates of Strain[J]. J. Mech. Phys. Solids, 1999, 47(5): 1 157–1 185CrossRefGoogle Scholar
  24. [24]
    Roy S, Suwas S. The Influence of Temperature and Strain Rate on the Deformation Response and Microstructural Evolution during Hot Compression of a Titanium Alloy Ti-6Al-4V-0.1B[J]. J. Alloys Compd., 2013, 548(4): 110–125CrossRefGoogle Scholar
  25. [25]
    Kotkunde N, Deole A D, Gupta A K, et al. Comparative Study of Constitutive Modeling for Ti-6Al-4V Alloy at Low Strain Rates and Elevated Temperatures[J]. Mater Des., 2014, 55: 999–1005CrossRefGoogle Scholar
  26. [26]
    Huang W, Zan X, Nie X, et al. Experimental Study on the Dynamic Tensile Behavior of a Poly-crystal Pure Titanium at Elevated Temperatures[J]. Mat. Sci. Eng. A, 2007, 443(1–2): 33–41CrossRefGoogle Scholar
  27. [27]
    Kapoor R, Nemat-Nasser S. Determination of Temperature Rise during High Strain Rate Deformation[J]. Mech. Mater, 1998, 27(1): 1–12CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Systems EngineeringChina Academy of Engineering PhysicsMianyangChina
  2. 2.College of Architecture and EnvironmentSichuan UniversityChengduChina

Personalised recommendations