Advertisement

Formation of Zr-contained Amorphous Alloy Films by Magnetron Co-sputtering

  • Yuchao Niu (牛玉超)
  • Lingyu Guo
  • Yongtai Zheng
  • Haijian Ma
  • Weimin Wang (王伟民)Email author
Metallic Materials
  • 2 Downloads

Abstract

In order to explore the application of magnetron co-sputtering in fabricating the amorphous alloy, Zr-contained amorphous films were prepared by this technique and investigated by scanning electron microscope, energy disperse spectroscopy and X-ray diffraction. The results show that the co-sputtered films are in fully amorphous state or with amorphous-nanocrystalline structure. The XRD patterns of the Zr-Cu and Zr-Ni amorphous films exhibit a double-peak phenomenon. There is a shift of diffusive peak with changing the sputtering current which is possibly attributed to the change of Zr-Ni and Zr-Cu intermetallic like short range orders. In addition, Zr-Cu-Ni ternary co-sputtered films have a sharper peak at high angle. The sputtering yield of element during co-sputtering ranks as Cu>Ni>Zr, which can be ascribed to the contribution of melting and boiling temperature, atomic size and electrical conductivity of elements.

Key words

amorphous film co-sputtering deposition short-range order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors are grateful to Prof. Xiaolin Wang from University of Wollongong for his valuable discussions and assistance in the present paper.

References

  1. [1]
    Inoue A. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys[J]. Acta Materialia, 2000, 48: 279–306CrossRefGoogle Scholar
  2. [2]
    Johnson W L. Bulk Amorphous Metal-An Emerging Engineering Material[J]. JOM-Journal of the Minerals Metals & Materials Society, 2002, 54: 40–43CrossRefGoogle Scholar
  3. [3]
    Schultz L, Eckert J. Glassy Metals III[M]. Berlin: Springer Varlag, 1994Google Scholar
  4. [4]
    Guo L Y, Geng S N, Pang J, et al. Structural Transformation and Property Improvement of Fe78Si9B13 Amorphous Ribbon by Pulsed Laser Processing[J]. Materials & Design, 2018, 160: 538–548CrossRefGoogle Scholar
  5. [5]
    Jia C G, Pang J, Pan S P, et al. Tailoring the Corrosion Behavior of Fe-based Metallic Glasses through Inducing Nb-triggered Netlike Structure[J]. Corrosion Science, 2019, 147: 94–107CrossRefGoogle Scholar
  6. [6]
    Wang X, Pang J, Guo L Y, et al. Thermal Analysis of Directional Pressure Annealed Fe78Si9B13 Amorphous Ribbons[J]. Thermochimica Acta, 2018, 661: 67–77CrossRefGoogle Scholar
  7. [7]
    Ristič R, Stubičar M, Babić E. Correlation between Mechanical, Thermal and Electronic Properties in Zr-Ni, Cu Amorphous Alloys[J]. Philosophical Magazine, 2007, 87: 5 629–5 637CrossRefGoogle Scholar
  8. [8]
    Basu J, Murty B S, Ranganathan S. Glass Forming Ability: Miedema Approach to (Zr, Ti, Hf)-(Cu, Ni) Binary and Ternary Alloys[J]. Journal of Alloys and Compounds, 2008, 465: 163–172CrossRefGoogle Scholar
  9. [9]
    Chen C J, Huang J C, Chou H S, et al. On the Amorphous and Nanocrystalline Zr-Cu and Zr-Ti Co-sputtered Thin Films[J]. Journal of Alloys and Compounds, 2009, 483: 337–340CrossRefGoogle Scholar
  10. [10]
    Jing Q, Xu Y, Zhang X Y, et al. Zr-Cu Amorphous Films Prepared by Magnetron Co-sputtering Deposition of Pure Zr and Cu[J]. Chinese Physics Letters, 2009, 26: 086 109–086 112CrossRefGoogle Scholar
  11. [11]
    Marshall A F, Walmsley R G, Stevenson D A. Crystallization of an Amorphous Cu88Zr20 Alloy Prepared by Magnetron Sputter Deposition[J]. Materials Science and Engineering, 1984, 63: 215–227CrossRefGoogle Scholar
  12. [12]
    Luo S, Yan B X, Shen J. Enhanced Photoelectric Property of Mo-C Codoped TiO2 Films Deposited by RF Magnetron Cosputtering[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32: 223–228CrossRefGoogle Scholar
  13. [13]
    Li B J, Huang L J, Zhou M, et al. Preparation and Spectral Analysis of Gold Nanoparticles using Magnetron Sputtering and Thermal Annealing[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29: 651–655CrossRefGoogle Scholar
  14. [14]
    Liu C Y, He F, Yan N N, et al. Influence of Deposition Pressure on Properties of ZnO: Al Films Fabricated by RF Magnetron Sputtering[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31: 1 235–1 239CrossRefGoogle Scholar
  15. [15]
    Swann S. Magnetron Sputtering[J]. Physics in Technology, 1988, 19: 67CrossRefGoogle Scholar
  16. [16]
    Zalnezhad E. Effect of Structural Evolution on Mechanical Properties of ZrO2 Coated Ti-6Al-7Nb-biomedical Application[J]. Applied Surface Science, 2016, 370: 32–39CrossRefGoogle Scholar
  17. [17]
    Baradaran S, Zalnezhad E, Basirun W J, et al. Statistical Optimization and Fretting Fatigue Study of Zr/ZrO2 Nanotubular Array Coating on Ti-6Al-4V[J]. Surface and Coatings Technology 2014, 258: 979–990CrossRefGoogle Scholar
  18. [18]
    Carcia P F, McLean R S, Reilly M H, et al. Transparent ZnO Thin-film Transistor Fabricated by RF Magnetron Sputtering[J]. Applied Physics Letters, 2003, 82: 1 117–1 119CrossRefGoogle Scholar
  19. [19]
    Dudonis J, Brucas R, Miniotas A. Synthesis of Amorphous Zr-Cu Alloys by Magnetron Co-sputtering[J]. Thin Solid Films, 1996, 275: 164–167CrossRefGoogle Scholar
  20. [20]
    Xu Y. Study on the Preparation and Crystallization Process of Zr-Cu Amorphous Alloy Thin Films[D]. Qinghuangdao: Yanshan University, 2005Google Scholar
  21. [21]
    Li Y, Guo Q, Kalb J A, et al. Matching Glass-Forming Ability with the Density of the Amorphous Phase[J]. Science, 2008, 322: 1 816–1 819CrossRefGoogle Scholar
  22. [22]
    Chou H S, Huang J C, Lai Y H, et al. Amorphous and Nanocrystalline Sputtered Mg-Cu Thin Films[J]. Journal of Alloys and Compounds, 2009, 483: 341–345CrossRefGoogle Scholar
  23. [23]
    Miyazaki H. Fabrication of YbAl 3 Film via Annealing Amorphous Yb-Al Film Deposited by RF Magnetron Sputtering[J]. Vacuum, 2008, 83: 416–418CrossRefGoogle Scholar
  24. [24]
    Mattern N, Kühn U, Gebert A, et al. Microstructure and Thermal Behavior of Two-phase Amorphous Ni-Nb-Y Alloy[J]. Scripta Materialia, 2005, 53: 271–274CrossRefGoogle Scholar
  25. [25]
    Antonian Z, Tu G H, Strom-Olsen J O. Crystallization Characteristics of Ni-Zr Metallic Glasses from Ni20Zr80 to Ni70Zr30[J]. Journal of Applied Physics, 1983, 54: 3 111–3 116CrossRefGoogle Scholar
  26. [26]
    Sigmund P. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets[J]. Physical Review, 1969, 184: 383–315CrossRefGoogle Scholar
  27. [27]
    Dean J A. Lange’s Handbook of Chemistry[M]. New York: McGraw-Hill, Inc., 1999Google Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Yuchao Niu (牛玉超)
    • 1
  • Lingyu Guo
    • 2
  • Yongtai Zheng
    • 3
  • Haijian Ma
    • 2
  • Weimin Wang (王伟民)
    • 2
    Email author
  1. 1.School of Material Science and EngineeringShandong Jianzhu UniversityJinanChina
  2. 2.School of Material Science and EngineeringShandong UniversityJinanChina
  3. 3.Shandong Yucheng Hanneng Solar Power Co., LtdYuchengChina

Personalised recommendations