Microstructure and Solid/Liquid Interface Evolutions of Directionally Solidified Fe-Al-Ta Eutectic Alloy

  • Chunjuan Cui (崔春娟)Email author
  • Songyuan Wang
  • Meng Yang
  • Haijun Su
  • Yagang Wen
  • Pei Wang
  • Chiqiang Ren
Metallic Materials


A modified Bridgman directional solidification technique was used to prepare Fe-Al-Ta eutectic in situ composites at different growth rates ranging from 6 to 80 µm/s. The directionally solidified Fe-Al-Ta eutectic composites are composed of two phases: Fe(Al,Ta) matrix phase, and Fe2Ta(Al) Laves phase. Solidification microstructure is affected by solidification rate. Microstructure of the Fe-Al-Ta eutectic alloy grown at 6.0 µm/s is broken-lamellar eutectic. Eutectic colonies are formed with the increase of the solidification rate. Microstructures are mainly composed of the lamellar or fibrous eutectic at the center of the colony and coarse lamellar eutectic zone at the boundary. Meanwhile, the inter-lamellar spacing (or the inter-rod spacing) is decreased. The spacing adjustments are also observed in Fe-Al-Ta eutectic alloy. The solid/liquid interface evolves from planar interface to shallow cellular interface, then to deep cellular, and finally to shallow cellular planar with the increase of the solidification rate.

Key words

directional solidification solidification rate eutectic alloy solid/liquid interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cinca N, Lima C R C, Guilemany J M. An Overview of Intermetallics Research and Application: Status of Thermal Spray Coatings[J]. Journal of Materials Research and Technology, 2013, 2(1): 75–86CrossRefGoogle Scholar
  2. [2]
    Zhou R F, Han Y F, Li S H. High Temperature Structure MateriaIs[M]. Beijing: National Defence Industry Press, 2006Google Scholar
  3. [3]
    Guo J T, Zhou L Z, Yuan C, et al. The Microstructure and Mechanical Properties of Several Kinds of Original and Unique High Temperature Alloys[J]. Transactions of Non-ferrous Metals Society of China, 2011, 21 (2): 237–250Google Scholar
  4. [4]
    Hotař A, Kejzlar P, Palm M, et al. The Effect of Zr on High-Temperature Oxidation Behaviour of Fe3Al-based Alloys[J]. Corrosion Science, 2015, 100: 147–157CrossRefGoogle Scholar
  5. [5]
    Hotař A, Palm M, Kratochvíl P, et al. High-temperature Oxidation Behaviour of Zr Alloyed Fe3Al-type Iron Aluminide[J]. Corrosion Science, 2012, 63: 71–81CrossRefGoogle Scholar
  6. [6]
    Risanti D D, Sauthoff G. Microstructures and Mechanical Properties of Fe-Al-Ta Alloys with Strengthening Laves Phase[J]. Intermetallics, 2011, 19: 1 727–1 736CrossRefGoogle Scholar
  7. [7]
    Farrokhi A, Samadi A, Asadabad M A, et al. Characterization of Mechanically Alloyed Nano Structured Fe3Al Intermetallic Compound by X-ray Diffractometry[J]. Advanced Powder Technology, 2015, 26(3): 797–801CrossRefGoogle Scholar
  8. [8]
    Janda D, Fietzek H, Galetz M, et al. The Effect of Micro-alloying with Zr and Nb on the Oxidation Behavior of Fe3Al and FeAl Alloys[J]. Intermetallics, 2013,41: 51–57CrossRefGoogle Scholar
  9. [9]
    Zamanzade M, Vehoff H, Barnoush A. Effect of Chromium on Elastic and Plastic Deformation of Fe3Al Intermetallics[J]. Intermetallics, 2013, 41: 28–34CrossRefGoogle Scholar
  10. [10]
    Tapsuan T, Niyomwas S. Effect of Preform Conditions on Synthesis of Fe3Al-TiB2-Al2O3 Composite by Self-propagating High-temperature Synthesis[J]. Procedia Engineering, 2012, 32: 635–641CrossRefGoogle Scholar
  11. [11]
    Hasemann G, Schneibel J H, George E P. Dependence of the Yield Stress of Fe3Al on Heat Treatment[J]. Intermetallics, 2012, 21(1): 56–61CrossRefGoogle Scholar
  12. [12]
    Xiao Z X, Zheng L J, Wang L, et al. Microstructure Evolution of Ti-47Al-2Cr-2Nb Alloy in the Liquid-Metal-Cooling (LMC) Directional-solidification Process[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(2): 197–201CrossRefGoogle Scholar
  13. [13]
    Reviere R, Sauthoff G, Johnson D R, et al. Microstructure of Directionally Solidified Eutectic Based Fe(Al,Ta)/Fe2Ta(Al) Alloys as a Function of Processing Conditions[J]. Intermetallics, 1997, 5: 161–172CrossRefGoogle Scholar
  14. [14]
    Goulart P R, Cruz K S, Spinelli J E, et al. Cellular Growth during Transient Directional Solidification of Hypoeutectic Al-Fe Alloys[J]. Journal of Alloys and Compounds, 2009, 470: 589–599CrossRefGoogle Scholar
  15. [15]
    Milenkovic S, Palm M. Microstructure and Mechanical Properties of Directionally Solidified Fe-Al-Nb Eutectic[J]. Intermetallics, 2008, 16: 1 212–1 218CrossRefGoogle Scholar
  16. [16]
    Mota M A, Coelho A A, Bejarano JMZ, et al. Fe-Al-Nb Phase Diagram Investigation and Directional Growth of the (Fe,Al)2Nb-(Fe,Al,Nb)ss Eutectic System[J]. Journal of Alloys and Compounds, 2005, 399: 196–201.CrossRefGoogle Scholar
  17. [17]
    Tiller W A. Liquid Metals and Solidification[M]. Cleveland: Amer. Soc. Metal, 1958Google Scholar
  18. [18]
    Liu S, Lee J H, Trivedi. Dynamic Effects in the Lamellar-rod Eutectic Transition[J]. Acta Materialia, 2011, 59(8): 3 102–3 115CrossRefGoogle Scholar
  19. [19]
    Jackson K A, Hunt J D. Lamellar and Rod Eutectic Growth[M]. New York: Trans. Met. Soc. Aime, 1996Google Scholar
  20. [20]
    Hunt J D. The Lamella-rod Transformation in Eutectics[J]. Journal of the Institute of Metals, 1966, (94): 2 348–2 351Google Scholar
  21. [21]
    Hunt J D, Jackson K A. Binary Eutectic SoIidification[M]. New York: Transact. Aime, 1966Google Scholar
  22. [22]
    Pelcé P, Rochwerger D, Karma A. Oscillatory Instability and Minimum Undercooling Criterion in Directional Solidification[J]. Journal of Crystal Growth, 1991, 110(4): 815–822CrossRefGoogle Scholar
  23. [23]
    Liu G H, Wang Z D, Li X Z, et al. Continued Growth Controlling of the Non-preferred Primary Phase for the Parallel Lamellar Structure in Directionally Solidified Ti-50Al-4Nb Alloy[J]. Journal of Alloys and Compounds, 2015, 632: 152–160CrossRefGoogle Scholar
  24. [24]
    Cui C J, Zhang J, Xue T, et al. Effect of Solidification Rate on Micro-structure and Solid/Liquid Interface Morphology of Ni-11.5 wt%Si Eutectic Alloy[J]. Journal of Materials Science & Technology, 2015, 31(3): 280–284CrossRefGoogle Scholar
  25. [25]
    Jacot A, Sumida M, Kurz W. Solute Trapping-free Massive Transformation at Absolute Stability[J]. Acta Materialia, 2011, 59: 1 716–1 724CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Chunjuan Cui (崔春娟)
    • 1
    • 2
    Email author
  • Songyuan Wang
    • 1
  • Meng Yang
    • 1
  • Haijun Su
    • 1
  • Yagang Wen
    • 1
  • Pei Wang
    • 1
  • Chiqiang Ren
    • 1
  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.Shaanxi Engineering Technology Research Center for Wear-resisting MaterialsXi’anChina

Personalised recommendations