Thermodynamic Stability of Sulfate Ions on Calcium Aluminosilicate Hydrate Microstructure

  • Chenguang Hu (胡晨光)Email author
  • Qingjun Ding
  • Huan Wang
  • Xiaoxin Feng
Cementitious Materials


The thermodynamic stability of sulfate ions on synthesized calcium aluminosilicate hydrate (C-A-S-H) microstructure with different Ca/Si ratios and Al/Si ratios was investigated by XRD, SEM-EDS, 29Si and 27Al nuclear magnetic resonance (NMR) and thermodynamic modeling. The results indicate that sulfate attack leads to both decalcification and dealumination for C-A-S-H gels, and the amount of corrosion products (gypsum and ettringite) decreased gradually with decreasing Ca/Si ratios of C-A-S-H. Sulfate ions can also promote the polymerization degree of C-A-S-H gels, improving its resistance to sulfate attack. Moreover, the 4-coordination aluminum (Al[4]) in C-A-S-H, 5-coordination aluminum (Al[5]), 6-ccordination aluminum (Al[6]) in TAH (third aluminum hydrate) and Al[6] in monosulfate or C-A-H (calcium aluminate hydrate) can be transformed into Al[6] in ettringite by sulfate attack. Furthermore, through thermodynamic calculation, the decrease of Ca/Si ratios and increase of Al/Si ratios can improve the thermodynamic stability of C-A-S-H gels under sulfate attack, which agrees well with the experiment results.

Key words

sulfate attack calcium aluminosilicate hydrate thermodynamic stability microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Taylor H F W. Cement Chemistry, 2nd ed[M]. London: Thomas Telford, 1997CrossRefGoogle Scholar
  2. [2]
    Irassar E F, Bonavetti V L, Gonzalez M. Microstructural Study of Sulfate Attack on Ordinary and Limestone Portland Cements at Ambient Temperature[J]. Cem. Concr. Res., 2003, 33(1): 31–41CrossRefGoogle Scholar
  3. [3]
    Kalousek G L. Crystal Chemistry of Hydrous Calcium Silicates: I. Substitution of Aluminum in Lattice of Tobermorite[J]. J. Am. Ceram. Soc., 1957, 40(3): 74–80CrossRefGoogle Scholar
  4. [4]
    Richardson I G, Brough A R, Brydson R, et al. Location of Aluminum in Substituted Calcium Silicate Hydrate (C-S-H) Gels as Determined by 29Si and 27Al NMR and EELS[J]. J. Am. Ceram. Soc., 1993, 76(9): 2 285–2 288CrossRefGoogle Scholar
  5. [5]
    Richardson I G. The Nature of CSH in Hardened Cements[J]. Cem. Concr. Res., 1999, 29(8): 1 131–1 147CrossRefGoogle Scholar
  6. [6]
    Richardson I G. Tobermorite/Jennite and Tobermorite/Calcium Hydroxide Based Models for the Structure of CSH: Applicability to Hardened Pastes of Tricalcium Silicate, ß-dicalcium Silicate, Portland Cement, and Blends of Portland Cement with Blast-furnace Slag, Metakaolin, or Silica Fume[J]. Cem. Concr. Res., 2004, 34(9): 1 733–1 777CrossRefGoogle Scholar
  7. [7]
    El-Hachem R, Rozière E, Grondin F, et al. New Procedure to Investigate External Sulphate Attack on Cementitious Materials[J]. Cem. Concr Compo., 2012, 34(3): 357–364CrossRefGoogle Scholar
  8. [8]
    Lothenbach B, Bary B, Bescop P L, et al. Sulfate Ingress in Portland Cement[J]. Cem. Concr Res., 2010, 40(8): 1 211–1 225CrossRefGoogle Scholar
  9. [9]
    Kunther W, Lothenbach B, Skibsted J. Influence of the Ca/Si Ratio of the C-S-H Phase on the Interaction with Sulfate Ions and Its Impact on the Ettringite Crystallization Pressure[J]. Cem. Concr Res., 2015, 69(1): 37–49CrossRefGoogle Scholar
  10. [10]
    Lippmaa E, Maegi M, Samoson A, et al. Structural Studies of Silicates by Solid-state High-resolution 29Si NMR[J]. J. Am. Chem. Soc., 1980, 102: 4 889–4 893CrossRefGoogle Scholar
  11. [11]
    Justnes H, Meland I, Bjoergum J O, et al. NMR-a Powerful Tool in Cement and Concrete Research[J]. Adv. Cem. Res., 1990, 3(11): 105–110CrossRefGoogle Scholar
  12. [12]
    Sun G K, Young J F, Kirkpatrick R J. The Role of Al in C-S-H: NMR, XRD, and Compositional Results for Precipitated Samples[J]. Cem. Concr Res., 2006, 36(1): 18–29CrossRefGoogle Scholar
  13. [13]
    Andersen M D, Jakobsen H J, Skibsted J. Incorporation of Aluminum in the Calcium Silicate Hydrate (C-S-H) of Hydrated Portland Cements: a High-field 27Al and 29Si MAS NMR Investigation[J]. Inorg. Chem., 2003, 42(7): 2 280–2 287CrossRefGoogle Scholar
  14. [14]
    Grimmer A R. Structural Investigation of Calcium Silicates from 29Si Chemical Shift Measurements[M]. In: P Colombet, A-R Grimmer (Eds.). Application of NMR Spectroscopy to Cement Science, London: Gordon and Breach, 1994Google Scholar
  15. [15]
    Brough A R, Dobson C M, Richardson I G, et al. In Situ Solid-state NMR Studies of Ca3SiO5: Hydration at Room Temperature Using 29Si Enrichment[J]. J. Mater Sci., 1994, 29(15): 3 926–3 940CrossRefGoogle Scholar
  16. [16]
    Hu C G, Hu S G, Ding Q J, et al. Effect of Curing Regime on Degree of Al3+ Substituting for Si4+ in C-S-H Gels of Hardened Portland Cement Pastes[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2014, 29(3): 546–552CrossRefGoogle Scholar
  17. [17]
    Faucon P, Delagrave A, Petit J C, et al. Aluminum Incorporation in Calcium Silicate Hydrates (C-S-H) Depending on Their Ca/Si Ratio[J]. J. Phys. Chem., 1999, B103: 7 796–7 802CrossRefGoogle Scholar
  18. [18]
    Renaudin G, Russias J, Leroux F, et al. Structural Characterization of C-S-H and C-A-S-H Samples-Part II: Local Environment Investigated by Spectroscopic Analyses[J]. J. Solid State Chem., 2009, 182(12): 3 320–3 329CrossRefGoogle Scholar
  19. [19]
    Andersen M D, Jakobsen H J, Skibsted. A New Aluminium-hydrate Species in Hydrated Portland Cements Characterized by 27Al and 29Si MAS NMR Spectroscopy[J]. Cem. Concr Res., 2006, 36(1): 3–17CrossRefGoogle Scholar
  20. [20]
    Thoenen T, Kulik D. Nagra/PSI Chemical Thermodynamic Database 01/01 for the GEMS-Selektor (V.2-PSI) Geochemical Modeling Code, PSI, Villigen[EB/OL]., 2003

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Chenguang Hu (胡晨光)
    • 1
    • 2
    Email author
  • Qingjun Ding
    • 3
  • Huan Wang
    • 4
  • Xiaoxin Feng
    • 1
  1. 1.College of Materials Science and EngineeringNorth China University of Science and TechnologyTangshanChina
  2. 2.Hubei Key Laboratory of Roadway Bridge and Structure Engineering (Wuhan University of Technology)WuhanChina
  3. 3.College of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  4. 4.Hubei Communications Investment Intelligent Detection Co., LtdWuhanChina

Personalised recommendations