Influence of Replacement Level of Coal-series Kaolin on Hydration of Ordinary Portland Cement by X-ray Diffraction/Rietveld Method

  • Yuanyuan Liu (刘园圆)
  • Shaomin Lei (雷绍民)Email author
  • Yang Li
  • Feixiang Xie
  • Bo Li
Cementitious Materials


The influence of replacement level of calcined coal-series kaolin (CCK) on hydration of ordinary Portland cement (OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy (SEM). The results showed that, calcium hydroxide (CH), ettringite (AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and strätlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.

Key words

calcined coal-series kaolin X-ray diffraction/rietveld method hydration cement paste morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jansen D, Goetz-Neunhoeffer F, Stabler C, et al. A Remastered External Standard Method Applied to the Quantification of Early OPC Hydration[J]. Cem. Concr. Res., 2011, 41: 602–608CrossRefGoogle Scholar
  2. [2]
    Guirado F, Galí S, Chinchón S. Quantitative Rietveld Analysis of Aluminous Cement Clinker Phases[J]. Cem. Concr Res., 2000, 30: 1 023–1 029CrossRefGoogle Scholar
  3. [3]
    Bish DL, Howard SA. Quantitative Phase Analysis Using the Rietveld Method[J]. J. Appl. Cryst., 1988, 21: 86–91CrossRefGoogle Scholar
  4. [4]
    Snellings R, Bazzoni A, Scrivener K. The Existence of Amorphous Phase in Portland Cements: Physical Factors Affecting Rietveld Quantitative Phase Analysis[J]. Cem. Concr Res., 2014, 59: 139–146CrossRefGoogle Scholar
  5. [5]
    álvarez-Pinazo G, Cuesta A, García-Maté M, et al. Rietveld Quantitative Phase Analysis of Yeelimite-containing Cements[J]. Cem. Concr. Res., 2012, 42: 960–971CrossRefGoogle Scholar
  6. [6]
    Scrivener KL, Füllmann T, Gallucci E, et al. Quantitative Study of Portland Cement Hydration by X-ray Diffraction/Rietveld Analysis and Independent Methods[J]. Cem. Concr Res., 2004, 34: 1 541–1 547CrossRefGoogle Scholar
  7. [7]
    Wild S, Khatib JM, Jones A. Relative Strength, Pozzolanic Activity and Cement Hydration in Superplasticised Metakaolin Concrete[J]. Cem. Concr. Res., 1996, 26: 1 537–1 544CrossRefGoogle Scholar
  8. [8]
    Sabir BB, Wild S, Bai J. Metakaolin and Calcined Clays as Pozzolans for Concrete: a Review[J].Cem. Concr Compos., 2001, 23: 441–454CrossRefGoogle Scholar
  9. [9]
    Cyr M, Lawrence P, Ringot E. Efficiency of Mineral Admixtures in Mortars: Quantification of the Physical and Chemical Effects of Fine Admixtures in Relation with Compressive Strength[J]. Cem. Concr. Res., 2006, 36: 264–277CrossRefGoogle Scholar
  10. [10]
    Liu Y, Lei S, Lin M, et al. Assessment of Pozzolanic Activity of Calcined Coal-series Kaolin[J]. Appl. Clay Sci., 2017, 143: 159–167CrossRefGoogle Scholar
  11. [11]
    Young RA, Wiles DB. Profile Shape Functions in Rietveld Refinements[J]. J. Appl. Cryst., 1982, 15: 430–438CrossRefGoogle Scholar
  12. [12]
    Wiles DB, Young RA. A New Computer Program for Rietveld Analysis of X-ray Powder Diffraction Patterns[J]. J. Appl. Cryst., 1981, 14: 149–151CrossRefGoogle Scholar
  13. [13]
    de La Torre AG, Bruque S, Campo J, et al. The Superstructure of C3S from Synchrotron and Neutron Powder Diffraction and Its Role in Quantitative Analysis[J]. Cem. Concr Res., 2002, 32: 1 347–1 356CrossRefGoogle Scholar
  14. [14]
    Jost KH, Ziemer B, Seydel R. Redetermination of the Structure of β-Dicalcium Silicate[J]. Acta Crystallogr. B, 1977, 33: 1 696–1 700CrossRefGoogle Scholar
  15. [15]
    Colville AA, Geller S. The Crystal Structure of Brownmillerite, Ca2Fe-AlO5[J]. Acta Crystallogr. B, 1971, 27: 2 311–2 315CrossRefGoogle Scholar
  16. [16]
    Mondal P, Jeffery JW. The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6[J]. Acta Crystallogr. B, 1975, 31: 689–697CrossRefGoogle Scholar
  17. [17]
    de la Torre AG, Lopez-Olmo M-G, Alvarez-Rua C, et al. Structure and Microstructure of Gypsum and Its Relevance to Rietveld Quantitative Phase Analyses[J]. Powder Diffr., 2004, 19: 240–246CrossRefGoogle Scholar
  18. [18]
    Wartchow R. Datensammlung Nach der “Learnt Profile”-Methode(LP) Fur Calcit und Vergleich Mit der “Background Peak Background”-Methode (BPB) [J]. Zeit. Kristall., 1989, 186: 300–302Google Scholar
  19. [19]
    Jorgensen JD. Compression Mechanisms in Alpha-quartz Structures-SiO2 and GeO2[J]. J. Appl. Phys., 1978, 49: 5 473–5 478CrossRefGoogle Scholar
  20. [20]
    Goetz-Neunhoeffer F, Neubauer J. Refined Ettringite Structure for Quantitative X-ray Diffraction Analysis[J]. Powder Diffr., 2006, 21: 4–10CrossRefGoogle Scholar
  21. [21]
    Allmann R. Refinement of the Hybrid Layer Structure (Ca2Al(OH)6)+ (0.5SO4•3H2O)-[J]. Neues Jahrb. Mineral. Monatsh., 1977, 3: 136–144Google Scholar
  22. [22]
    Busing WR, Levy HA. Neutron Diffraction Study of Calcium Hydroxide[J]. J. Chem. Phys., 1957, 26: 563–568CrossRefGoogle Scholar
  23. [23]
    Rinaldi R, Sacerdoti M. Strätlingite: Crystal Structure, Chemistry, and a Reexamination of Its Polytype Vertumnite[J]. Eur. J. Mineral., 1990, 2(6): 841–849CrossRefGoogle Scholar
  24. [24]
    Taylor D. Thermal Expansion Data. I. Binary Oxides with the Sodium Chloride and Wurtzite Structure, MO[J]. Trans. J. Brit. Ceram. Soc., 1984, 83: 5–9Google Scholar
  25. [25]
    Albertsson J, Abrahams SC, Kvick A. Atomic Displacement, Anharmonic Thermal Vibration, Expansivity and Pyroelectric Coefficient Thermal Dependences in ZnO[J]. Acta Crystallogr. B, 1989, 45: 34–40CrossRefGoogle Scholar
  26. [26]
    Badogiannis E, Kakali G, Dimopoulou G, et al. Metakaolin as a Main Cement Constituent. Exploitation of Poor Greek Kaolins[J]. Cem. Concr. Compos., 2005, 27: 197–203CrossRefGoogle Scholar
  27. [27]
    AQSIQ, SAC. Quantitative Determination of Constituents of Cement[S]. GB/T 12960–2007, 2007Google Scholar
  28. [28]
    Murat M. Hydration Reaction and Hardening of Calcined Clays and Related Minerals. I. Preliminary Investigation on Metakaolinite[J]. Cem. Concr. Res., 1983, 13: 259–266CrossRefGoogle Scholar
  29. [29]
    Wang X, Lee H. Modeling the Hydration of Concrete Incorporating Fly Ash or Slag[J]. Cem. Concr. Res., 2010, 40: 984–996CrossRefGoogle Scholar
  30. [30]
    Han J, Wang K, Shi J, et al. Influence of Sodium Aluminate on Cement Hydration and Concrete Properties[J]. Constr. Build. Mater., 2014, 64: 342–349CrossRefGoogle Scholar
  31. [31]
    Habert G, Choupay N, Escadeillas G, et al. Clay Content of Argillites: Influence on Cement Based Mortars[J]. Appl. Clay Sci., 2009, 43: 322–330CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Yuanyuan Liu (刘园圆)
    • 1
    • 2
  • Shaomin Lei (雷绍民)
    • 2
    Email author
  • Yang Li
    • 2
  • Feixiang Xie
    • 2
  • Bo Li
    • 3
  1. 1.School of Civil and Architectural EngineeringYangtze Normal UniversityChongqingChina
  2. 2.School of Resource and Environment EngineeringWuhan University of TechnologyWuhanChina
  3. 3.Yichang Huilong Science and Technology Co., Ltd.YichangChina

Personalised recommendations