Advertisement

Effect of Nano Silica on Hydration and Microstructure Characteristics of Cement High Volume Fly Ash System Under Steam Curing

  • Baoguo Ma (马保国)
  • Junpeng Mei (梅军鹏)Email author
  • Hongbo Tan
  • Hainan Li
  • Xiaohai Liu
  • Wenbin Jiang
  • Ting Zhang
Cementitious Materials
  • 3 Downloads

Abstract

The influences of nano silica (NS) on the hydration and microstructure development of steam cured cement high volume fly ash (40 wt%, CHVFA) system were investigated. The compressive strength of mortars was tested with different NS dosage from 0 to 4%. Results show that the compressive strength is dramatically improved with the increase of NS content up to 3%, and decreases with further increase of NS content (e g, at 4%). Then X-ray diffraction (XRD), differential scanning calorimetry-thermogravimetry (DSCTG), scanning electron microscope (SEM), energy disperse spectroscopy (EDS), mercury intrusion porosimeter (MIP) and nuclear magnetic resonance (NMR) were used to analyze the mechanism. The results reveal that the addition of NS accelerates the hydration of cement and fly ash, decreases the porosity and the content of calcium hydroxide (CH) and increases the polymerization degree of C-S-H thus enhancing the compressive strength of mortars. The interfacial transition zone (ITZ) of CHVFA mortars is also significantly improved by the addition of NS, embodying in the decrease of Ca/Si ratio and CH enrichment of ITZ.

Key words

nano silica cement high volume fly ash hydration pozzolanic reaction pore structure interfacial transition zone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Neville A M. Properties of Concrete[M]. 5th ed. Englewood Cliffs: Prentice Hall, 2012Google Scholar
  2. [2]
    WBCSD, I E A. Cement Technology Roadmap 2009 Carbon Emissions Reductions up to 2050: Part 1[J]. China Cement, 2010, (6): 24–32. (in Chinese)Google Scholar
  3. [3]
    Mehta P K. Concrete Technology for Sustainable Development[J]. ACI. Mater. J., 1999, 21 (11): 47–53Google Scholar
  4. [4]
    Steelhome Information Department. National Output and Growth Rate of Cement in 2016[OL]. http://news.steelhome.cn/2017/01/20/n2977438.html, January 20th, 2017 (in Chinese)
  5. [5]
    Wang A Q, Zhang C Z, Sun W. Fly Ash Effects: I. The Morphological Effect of Fly Ash[J]. Cem. Concr. Res., 2003, 33: 2 023–2 029CrossRefGoogle Scholar
  6. [6]
    Wang A Q, Zhang C Z, Sun W. Fly Ash Effects II. The Active Effect of Fly Ash[J]. Cem. Concr. Res., 2004, 34: 2 057–2 060CrossRefGoogle Scholar
  7. [7]
    Wang A Q, Zhang C Z, Sun W. Fly Ash Effects III. The Microaggregate Effect of Fly Ash[J]. Cem. Concr. Res., 2004, 34: 2 061–2 066CrossRefGoogle Scholar
  8. [8]
    Hou P K, Wang K J, Qian J S, et al. Effects of Colloidal NanoSiO2 on Fly Ash Hydration[J]. Cem. Concr. Compos., 2012, 34 (10): 1 095–1 103CrossRefGoogle Scholar
  9. [9]
    Zhao X Y, Liu B J, Jiang N N. Influence of Mineral Admixtures on the Characteristics of Steam Curing Hardened Cement Paste[J]. Fly Ash Comprehensive Utilization, 2010, (3): 6–12 (in Chinese)Google Scholar
  10. [10]
    Yazici S, Arel H S. The Influence of Steam Curing on Early-Age Compressive Strength of Pozzolanic Mortars[J]. Arab. J. Sci. Eng., 2016, 41 (4): 1 413–1 420CrossRefGoogle Scholar
  11. [11]
    He Z M, Liu J Z, Zhu K W. Influence of Mineral Admixtures on the Short and Long-Term Performance of Steam-Cured Concrete[J]. Energy Procedia, 2012, 16: 836–841CrossRefGoogle Scholar
  12. [12]
    Li G Y. Properties of High-Volume Fly Ash Concrete Incorporating Nano-SiO2[J]. Cem. Concr. Res., 2004, 34 (6): 1 043–1 049CrossRefGoogle Scholar
  13. [13]
    Ye Q, Zhang Z N, Kong D Y, et al. Influence of Nano-SiO2 Addition on Properties of Hardened Cement Paste as Compared with Silica Fume[J]. Constr. Build. Mater., 2007, 21 (3): 539–545CrossRefGoogle Scholar
  14. [14]
    Jo B W, Kim C H, Tae G H, et al. Characteristics of Cement Mortar with Nano-SiO2 Particles[J]. Constr. Build. Mater., 2007, 21 (6): 1 351–1 355CrossRefGoogle Scholar
  15. [15]
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Fly Ash Used for Cement and Concrete[S]. GB1596–2017, 2017 (in Chinese)Google Scholar
  16. [16]
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Sand for Construction[S]. GB/T14684–2011, 2011 (in Chinese)Google Scholar
  17. [17]
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Method of Testing Cements-Determination of Strength[S]. GB/T 17671–1999, 1999 (in Chinese)Google Scholar
  18. [18]
    Jain J, Neithalath N. Analysis of Calcium Leaching Behavior of Plain and Modified Cement Pastes in Pure Water[J]. Cem. Concr. Compos., 2009, 31 (3): 176–185CrossRefGoogle Scholar
  19. [19]
    Lian H Z, Tong L, Chen E Y. Phase Research Foundation of Building Materials[M]. Beijing: Tsinghua University Press, 1996 (in Chinese)Google Scholar
  20. [20]
    Hou P K, Kawashima S, Kong D Y, et al. Modification Effects of Colloidal NanoSiO2 on Cement Hydration and Its Gel Property[J]. Compos. Part B-Eng., 2013, 45: 440–448CrossRefGoogle Scholar
  21. [21]
    Haruehansapong S, Pulngern T, Chucheepsakul S. Effect of the Particle Size of Nanosilica on the Compressive Strength and the Optimum Replacement Content of Cement Mortar Containing Nano-SiO2[J]. Constr. Build. Mater., 2014, 50 (2): 471–477CrossRefGoogle Scholar
  22. [22]
    Zhang M H, Li H. Pore Structure and Chloride Permeability of Concrete Containing Nano-Particles for Pavement[J]. Constr. Build. Mater., 2011, 25 (2): 608–616CrossRefGoogle Scholar
  23. [23]
    Quercia G, Husken G, Brouwers HJH. Water Demand of Amorphous Nano Silica and Its Impact on the Workability of Cement Paste[J]. Cem. Concr. Res., 2012, 42: 344–357CrossRefGoogle Scholar
  24. [24]
    Quercia G, Spiesz P, Husken G, et al. Effects of Amorphous Nano-Silica Additions on Mechanical and Durability Performance of SCC Mixtures[C]. Proc. International Congress on Durability of Concrete, Trondheim, Norway, 2012Google Scholar
  25. [25]
    Senff L, Hotza D, Repette W L, et al. Influence of Added Nanosilica and/or Silica Fume on Fresh and Hardened Properties of Mortars and Cement Pastes[J]. Adv. Appl. Ceram., 2009, 108 (7): 418–428CrossRefGoogle Scholar
  26. [26]
    Gartner E M, Young J F, Damidot D A, et al. Hydration of Portland Cement[C]. In: Bensted J, Barnes P, editors. Structure and Performance of Cements. London: Spon Press, 2002Google Scholar
  27. [27]
    Shaikh F U A, Supit S W M, Sarker P K. A Study on the Effect of Nano Silica on Compressive Strength of High Volume Fly Ash Mortars and Concretes[J]. Mater Design., 2014, 60: 433–442CrossRefGoogle Scholar
  28. [28]
    Hou P K, Kawashima S, Wang K J, et al. Effects of Colloidal Nanosilica on Rheological and Mechanical Properties of Fly ash-Cement Mortar[J]. Cem. Concr Compos., 2013, 35 (1): 12–22CrossRefGoogle Scholar
  29. [29]
    Larsen G. Microscopic Point Measuring: A Quantitative Petrographic Method of Determining the Ca(OH)2 Content of the Cement Paste of Concrete[J]. Mag. Concrete. Res., 1961, 13: 71–76CrossRefGoogle Scholar
  30. [30]
    Belkowitz J S. An Investigation of Nano Silica in the Cement Hydration Process[J]. ACL Special. Pub., 2009Google Scholar
  31. [31]
    Andersen M D, Jakobsen H J, Skibsted J. Characterization of White Portland Cement Hydration and the C-S-H Structure in the Presence of Sodium Aluminate by 27Al and 29Si MAS NMR Spectroscopy[J]. Cem. Concr Res., 2004, 34 (5): 857–868CrossRefGoogle Scholar
  32. [32]
    Love C A, Richardson I G, Brough A R. Composition and Structure of C-S-H in White Portland Cement-20% Metakaolin Pastes Hydrated at 25 °C[J]. Cem. Concr Res., 2007, 37 (2): 109–117CrossRefGoogle Scholar
  33. [33]
    Singh P S, Trigg M, Burgar I, et al. Geopolymer Formation Processes at Room Temperature Studied by Si-29 and Al-27 MAS-NMR[J]. Mat. Sci. Eng A-Struct., 2005, 396 (1–2): 392–402CrossRefGoogle Scholar
  34. [34]
    Barnes J R, Clague A D H, Clayden N J, et al. Hydration of Portland Cement Followed by Si-29 Solid-State NMR Spectroscopy[J]. J. Mater Sci. Lett., 1985, 4 (10): 1 293–1 295CrossRefGoogle Scholar
  35. [35]
    Fernandez-Jimenez A, Torre A G D L, Palomo A, et al. Quantitative Determination of Phases in the Alkali Activation of Fly Ash. Part I. Potential Ash Reactivity[J]. Fuel, 2006, 85 (5–6), 625–634CrossRefGoogle Scholar
  36. [36]
    Palomo A, Fernández-Jiménez A, Kovalchuk G, et al. Opc-Fly Ash Cementitious Systems: Study of Gel Binders Produced during Alkaline Hydration[J]. J. Mater Sci., 2007, 42 (9): 2 958–2 966CrossRefGoogle Scholar
  37. [37]
    Santanen A, Simola L K. Atomic Structure and Dehydration Mechanism of Amorphous Silica: Insights from 29Si and 1H Solid-State MAS NMR Study of SiO2 Nanoparticles[J]. Geochim. Cosmochim. Ac., 2013, 120: 39–64CrossRefGoogle Scholar
  38. [38]
    Wang L, He Z, Zhang B, et al. Quantitative Analysis of Fly Ash-Cement Hydration by 29Si MAS NMR[J]. J. Chin. Ceram. Soc., 2010, 38 (11): 2 212–2 216Google Scholar
  39. [39]
    Bentur A, Cohen M D. Effect of Condensed Silica Fume on the Micro-structure of the Interfacial Zone in Portland Cement Mortars[J]. J. Am. Ceram. Soc., 1987, 70 (10): 738–743CrossRefGoogle Scholar
  40. [40]
    Young J F, Hansen W. Volume Relationships for C-S-H Formation Based on Hydration Stoichiometries[J]. MRS, 1987, 85: 313CrossRefGoogle Scholar
  41. [41]
    Kurczyk H G, Schwiete H E. Concerning the Hydration Products of C3S and β-C2S[C]. Proc 4 th International Symposium on Chemistry of Cement, Washington, USA, 1962Google Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Baoguo Ma (马保国)
    • 1
  • Junpeng Mei (梅军鹏)
    • 1
    Email author
  • Hongbo Tan
    • 1
  • Hainan Li
    • 2
  • Xiaohai Liu
    • 1
  • Wenbin Jiang
    • 1
  • Ting Zhang
    • 1
  1. 1.State Key Laboratory of Silicate Materials for ArchitecturesWuhan University of TechnologyWuhanChina
  2. 2.Department of Construction CostWuhan University of TextileWuhanChina

Personalised recommendations