Coprecipitation Synthesis of Fluorides Nanoparticles with Multiform Structures and Mechanisms Research

  • Rui Wu (吴睿)Email author
  • Shenghai Zhang
  • Qiang Zhang
  • Cunfang Liu
  • Juan Song
  • Liang Hao
  • Guanghui Tian
  • Jiagen Lü (吕家根)Email author
Advanced Materials


Fluoride nanoparticles with multiform crystal structures and morphologies were successfully synthesized by a facile, effective, and environmentally friendly coprecipitation method. Transmission electron microscopy (TEM) was used to characterize the nanoparticles. The nanoparticles were modified by PEI, CTAB, PAA and Ci, respectively. It was feasible for function by -COOH and -NH2 groups, due to the surface modification. Moreover, different surface modifications of the nanoparticles were examined. The possible formation mechanisms for fluoride nanoparticles with surface modification were presented in detail. More importantly, it is expected to be widely applied to biomedicine.

Key words

fluorides nanoparticles synthesis mechanisms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Akhavan O. Graphene Scaffolds in Progressive Nanotechnology/Stem Cell-Based Tissue Engineering of the Nervous System[J]. J. Mater. Chem. B, 2016, 4(19): 3 169–3 190CrossRefGoogle Scholar
  2. [2]
    Ariga K, Ji Q M, Nakanishi W, et al. Nanoarchitectonics: A New Materials Horizon for Nanotechnology[J]. Mater. Horiz., 2015, 2(4): 406–413CrossRefGoogle Scholar
  3. [3]
    Shimanovich U, Gedanken A. Nanotechnology Solutions to Restore Antibiotic Activity. Nanotechnology Solutions to Restore Antibiotic Activity[J]. J. Mater. Chem. B, 2016, 4(5): 824–833CrossRefGoogle Scholar
  4. [4]
    Guan F F, Yao L F, Xie F J, et al. Optical and Magnetic Properties of Fe2O3/SiO2 Nano-Composite Films[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2009, 25(2): 206–209CrossRefGoogle Scholar
  5. [5]
    Wan M, Zhang G, He K H, et al. First-Principles Study on Adsorption of Au Atom on Hydroxylated SiO2 Surface[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2011, 26(6): 1 184–1 188CrossRefGoogle Scholar
  6. [6]
    Jitendra S, Shivani S, Shantanu V L. Applications of Nanomaterials in Dental Science: A Review[J]. J. Nanosci. Nanotechnol., 2017, 17(4): 2 235–2 255CrossRefGoogle Scholar
  7. [7]
    Stephen W and Lauren F G. Post-Synthesis Separation and Storage of Zero-Valent Iron Nanoparticles[J]. J. Nanosci. Nanotechnol., 2017, 17(4): 2 413–2 422CrossRefGoogle Scholar
  8. [8]
    Corato R D, Nadja C B, Ragusa A, et al. Multifunctional Nanobeads Based on Quantum Dots and Magnetic Nanoparticles: Synthesis and Cancer Cell Targeting and Sorting[J]. ACS Nano, 2011, 5(2): 1 109–1 121CrossRefGoogle Scholar
  9. [9]
    Rehman F U, Zhao C, Jiang H, et al. Biomedical Applications of Nano-Titania in Theranostics and Photodynamic Therapy[J]. Biomater. Sci., 2016, 4(1): 40–54CrossRefGoogle Scholar
  10. [10]
    Filippi M, Martinelli J, Mula G S, et al. Dendrimersomes: A New Vesicular Nano-Platform for MR-Molecular Imaging Applications[J]. Chem. Commun., 2014, 50(26): 3 453–3 456CrossRefGoogle Scholar
  11. [11]
    Ulyana S, Bernardes G J L, Knowles T P J, et al. Protein Micro-and Nano-Capsules for Biomedical Applications[J]. Chem. Soc. Rev., 2014, 43(5): 1 361–1 371CrossRefGoogle Scholar
  12. [12]
    Yang K, Feng L, Shi X Z, et al. Nano-Graphene in Biomedicine: Theranostic Applications[J]. Chem. Soc. Rev., 2013, 42(2): 530–547CrossRefGoogle Scholar
  13. [13]
    Varaprasad K, Ramam K, Reddy G S M, et al. Development and Characterization of Nano-Multifunctional Materials for Advanced Applications[J]. RSC Adv., 2014, 4(104): 60 363–60 370CrossRefGoogle Scholar
  14. [14]
    Schmidt L, Dimi A, Kemnitz E. A New Approach to Prepare Nanoscopic Rare Earth Metal Fluorides: the Fluorolytic Sol-Gel Synthesis of Ytterbium Fluoride[J]. Chem. Commun., 2014, 50(33): 6 613–6 616CrossRefGoogle Scholar
  15. [15]
    Kaczmarek A M, Hecke K V, Deun R V. Nano- and Micro-Sized Rare-Earth Carbonates and Their Use as Precursors and Sacrificial Templates for the Synthesis of New Innovative Materials[J]. Chem. Soc. Rev., 2015, 44(8): 2 032–2 059CrossRefGoogle Scholar
  16. [16]
    Wang F, Han Y, Lim C S, et al. Simulaneous Phase and Size Control of Upconversion Nanocrystals Through Lanthanide Doping[J]. Nature, 2010, 463(25): 1 061–1 065CrossRefGoogle Scholar
  17. [17]
    Mai H X, Zhan Y W, Si R., et al. High-Quality Sodium Rare-Earth Fluoride Nanocrystals Controlled Synthesis and Optical Properties[J]. J. Am. Chem. Soc., 2006, 128(19): 6 426–6 436CrossRefGoogle Scholar
  18. [18]
    Bouzigues C, Gacoin T, Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles[J]. ACS Nano, 2011, 5(11): 8 488–8 505CrossRefGoogle Scholar
  19. [19]
    Yu M X, Li F Y, Chen Z G. Laser Scanning Up-Conversion Luminescence Microscopy for Imaging Cells Labeled with Rare-Earth Nanophosphors[J]. Anal. Chem., 2009, 81(3): 930–935CrossRefGoogle Scholar
  20. [20]
    Wang F, Liu X G. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles[J]. J. Am. Chem. Soc., 2008, 130(17): 5 642–5 643CrossRefGoogle Scholar
  21. [21]
    Xiong L. Q, Shen B, Behera D, et al. Synthesis of Ligand-Functionalized Water-Soluble[18F]YF3 Nanoparticles for PET imaging[J]. Nanoscale, 2013, 5(8): 3 253–3 256CrossRefGoogle Scholar
  22. [22]
    Navadeep S, Khan L U, Vargas J M. Efficient Multicolor Tunability of Ultrasmall Ternary-doped LaF3 Nanoparticles: Energy Conversion and Magnetic Behavior[J]. Phys. Chem. Chem. Phys., 2017, 19(28): 18 660–18 670CrossRefGoogle Scholar
  23. [23]
    Wang M, Hou W, Mi C C, et al. Immunoassay of Goat Antihuman Immunoglobulin G Antibody Based on Luminescence Resonance Energy Transfer between Near-Infrared Responsive NaYF4: Yb, Er Upconversion Fluorescent Nanoparticles and Gold Nanoparticles[J]. Anal. Chem. 2009, 81(21): 8 783–8 789CrossRefGoogle Scholar
  24. [24]
    Diamente P R., Burke R D, Frank C J, et al. Bioconjugation of Ln3+-Doped LaF3 Nanoparticles to Avidin[J]. Langmuir, 2006, 22(4): 1 782–1 788CrossRefGoogle Scholar
  25. [25]
    Guan B Y, Wang T, Zeng S J, et al. A Versatile Cooperative Template-Directed Coating Method to Synthesize Hollow and Yolk-Shell Mesoporous Zirconium Titanium Oxide Nanospheres as Catalytic Reactors[J]. Nano Res., 2014, 7(2): 246–262CrossRefGoogle Scholar
  26. [26]
    Wang Z L, Hao J H, Chan H L W. Down-and Up-Conversion Photoluminescence, Cathodoluminescence and Paramagnetic Properties of NaGdF4: Yb3+, Er3+ Submicron Disks Assembled From Primary Nanocrystals[J]. J. Mater. Chem., 2010, 20(16): 3 178–3 123CrossRefGoogle Scholar
  27. [27]
    He F, Yang P, Wang D, et al. Self-Assembled β-NaGdF4 Microcrystals: Hydrothemal Synthesis, Morphology Evolution, and Luminescence Properties[J]. Inorg. Chem., 2011, 50(9): 4 116–4 124CrossRefGoogle Scholar
  28. [28]
    Qu X S, Pan G H, Yang H K, et al. Low-Temperature Synthesis of Luminescent and Mesoporous b-NaYF4 Microspheres via Polyol-Mediated Solvothermal Route[J]. RSC Adv., 2013, 3(3): 4 763–4 764CrossRefGoogle Scholar
  29. [29]
    Wu X J, Zhang Q B, Wang X, et al. One-Pot Synthesis of Carboxyl-Functionalized Rare Earth Fluoride Nanocrystals with Monodispersity, Ultrasmall Size and Very Bright Luminescence[J]. Eur. J. Inorg. Chem., 2011, 2011(13): 2 158–2 163CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  • Rui Wu (吴睿)
    • 1
    Email author
  • Shenghai Zhang
    • 2
  • Qiang Zhang
    • 1
  • Cunfang Liu
    • 1
  • Juan Song
    • 1
  • Liang Hao
    • 1
  • Guanghui Tian
    • 1
  • Jiagen Lü (吕家根)
    • 2
    Email author
  1. 1.College of Chemical & Environment Science, Shaanxi Key Laboratory of CatalysisShaanxi University of TechnologyHanzhongChina
  2. 2.Key Laboratory of Analytical Chemistry for Life Science of Shanxi Province, School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi’anChina

Personalised recommendations