Preparation and Properties of Polyvinyl Chloride/Carbon Nanotubes Composite

  • Jiashun Tao (陶家顺)
  • Yujun Qin (秦玉军)Email author
  • Pu Zhang
  • Zhixin Guo (郭志新)Email author
Advanced Materials


Chemically functionalized carbon nanotubes were combined with PVC to enhance both toughness and strength by simply mixing long alkyl chain modified multi-wall carbon nanotubes (abbreviated as MWNTs) or Ester-functionalized soluble MWNTs (abbreviated as eMWNTs) with PVC in Tetrahydrofuran (THF)/Cyclohexanone (CH) solution to obtain good dispersity solution. The MWNTs modified with 1-Bromohexadecane can effectively increase the intermolecular force with PVC by hydrogen bond. The obtained nanocomposite has a regular shape with homogeneously dispersed particles. PVC/2 wt% eMWNTs has been proved to possess excellent thermal stability. The intermolecular force between eMWNTs and PVC endows the as-fabricated nanocomposite with enhanced toughness and strength, indicating that our method is promising for wide use in PVC/eMWNTs nanocomposition.

Key words

polyvinyl chloride (PVC) toughness and strength MWNTs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kumar S, Dang T D, Arnold F E, et al. Synthesis, Structure, and Properties of PBO/SWNT Composites[J]. Macromolecules, 2002, 35(24): 9 039–9 043CrossRefGoogle Scholar
  2. [2]
    Zhu J, Kim J D, Peng H, et al. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization[J]. Nano Letters, 2003, 3(8): 1 107–1 113CrossRefGoogle Scholar
  3. [3]
    Chang C M, Liu Y L. Functionalization of Multi-Walled Carbon Canotubes with Non-Reactive Polymers through an Ozone-Mediated Process for the Preparation of a Wide Range of High Performance Polymer/Carbon Nanotube Composites[J]. Carbon, 2010, 48(4): 1 289–1 297CrossRefGoogle Scholar
  4. [4]
    Wang M, Pramoda P K, Goh S H. Reinforcing and Toughening of Poly(Vinyl Chloride) with Double-C60-Capped poly(n-Butyl Methacrylate)[J]. Macromolecules, 2006, 39(14): 4 932–4 934CrossRefGoogle Scholar
  5. [5]
    Yang B X, Shi J H, Pramoda K P, et al. Enhancement of Stiffness, Strength, Ductility and Toughness of Poly(Ethylene Oxide) Using Phenoxy-Grafted Multiwalled Carbon Nanotubes[J]. Nanotechnolgy, 2007, 18(12): 184–191CrossRefGoogle Scholar
  6. [6]
    Wang H, Xie G Y, Fang M H, et al. Electrical and Mechanical Properties of Antistatic PVC Films Containing Multi-Layer Graphene[J]. Composites Part B Engineering, 2015, 79: 444–450CrossRefGoogle Scholar
  7. [7]
    Gao G H, Cagin T, Goddard W A. Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes[J]. Nanotechnolgy, 1998, 9(3): 184–191CrossRefGoogle Scholar
  8. [8]
    Walters D A, Ericson L M, Casavant M J, et al. Elastic Strain of Freely Suspended Single-Wall Carbon Nanotube Ropes[J]. Appl. Phys. Lett., 1999, 74(25): 3 803–3 805CrossRefGoogle Scholar
  9. [9]
    Yu M F, Files B S, Arepalli S, et al. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties[J]. Phys. Rev. Lett., 2000, 84(24): 5 552–5 555CrossRefGoogle Scholar
  10. [10]
    Blake R, Coleman J N, Byrne M T, et al. Reinforcement of Poly (Vinyl Chloride) and Polystyrene Using Chlorinated Polypropylene Grafted Carbon Nanotubes[J]. J. Mater. Chem., 2006, 16: 4 206–4 213CrossRefGoogle Scholar
  11. [11]
    Shi J H, Yang B X, Pramoda K P, et al. Enhancement of the Mechanical Properties of Polypropylene Using Polypropylene-Grafted Multiwalled Carbon Nanotubes[J]. Nanotechnology, 2007, 18(12): 5 606–5 613Google Scholar
  12. [12]
    Salavagione H J, Martínez G, Ballesteros C. Functionalization of Multi-Walled Carbon Nanotubes by Stereoselective Nucleophilic Substitution on PVC[J]. Macromolecules, 2010, 43(23): 9 754–9 760CrossRefGoogle Scholar
  13. [13]
    Geng H Z, Rosen R, Zheng B, et al. Fabrication and Properties of Composites of Poly(Ethylene Oxide) and Functionalized Carbon Nanotubes[J]. Adv. Mater., 2002, 14(19): 1 387–1 390CrossRefGoogle Scholar
  14. [14]
    Qin Y J, Shi J H, Wu W, et al. Concise Route to Functionalized Carbon Nanotubes[J]. J. Phys. Chem. B, 2003, 107(47): 12 899–12 901CrossRefGoogle Scholar
  15. [15]
    Zhang J, Zou H, Qing Q, et al. Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes[J]. J. Phys. Chem. B, 2003, 107(16): 3 712–3 718CrossRefGoogle Scholar
  16. [16]
    Liu L, Qin Y, Guo Z X, et al. Reduction of Solubilized Multi-Walled Carbon Nanotubes[J]. Carbon, 2003, 41(2): 331–335CrossRefGoogle Scholar
  17. [17]
    Hamon M A, Chen J, Hu H, et al. Dissolution of Single-Walled Carbon Nanotubes[J]. Adv. Mater., 1999, 11(10): 834–840CrossRefGoogle Scholar
  18. [18]
    Aubin M, Prud’homme R E. Miscibility in Blends of Poly (Vinyl Chloride and Polylactones[J]. Macromolecules, 1980, 13(2): 365–369CrossRefGoogle Scholar
  19. [19]
    Coleman M M, Zarian J. Fourier-Transform Infrared Studies of Polymer Blends. II. Poly(є-Caprolactone)-Poly (Vinyl Chloride) System[J]. J. Polym. Sci., Polym. Phys. Ed., 1979, 17(5): 837–850CrossRefGoogle Scholar
  20. [20]
    Varnell D F, Moskala E J, Painter P C, et al. On the Application of Fourier Transform Infrared Spectroscopy to the Elucidation of Specific Interactions in Miscible Polyesterpoly (Vinyl Chloride) Blends[J]. Polym. Eng. Sci., 1983, 23(12): 658–662CrossRefGoogle Scholar
  21. [21]
    Braun D, Sonderhof D. Assignment of UV-Absorption Maxima of Degraded PVC[J]. Polym. Bull., 1985, 14(4): 39–43Google Scholar
  22. [22]
    Marconnet A M, Yamamoto N, Panzer M A, et al. Thermal Conduction in Aligned Carbon Nanotube-polymer Nanocomposites with High Packing Density[J]. ACS Nano, 2011, 5(6): 4 818–4 825CrossRefGoogle Scholar
  23. [23]
    Coleman J N, Khan U, Gun’ko Y K. Mechanical Reinforcement of Polymers Using Carbon Nanotubes[J]. Adv. Mater., 2006, 18(6): 689–706CrossRefGoogle Scholar
  24. [24]
    O’Connor I, Hayden H, O’Connor S, et al. Kevlar Coated Carbon Nanotubes for Reinforcement of Poly Vinyl Chloride[J]. J. Mater. Chem., 2008, 18: 5 585–5 588CrossRefGoogle Scholar
  25. [25]
    Hernández R, Peña J J, Irusta L, et al. The Effect of a Miscible and an Immiscible Polymeric Modifier on the Mechanical and Rheological Properties of PVC[J]. Eur. Polym. J., 2000, 36(5): 1 011–1 025CrossRefGoogle Scholar
  26. [26]
    Wang G J, Qu Z H, Liu L, et al. Study of SMA Graft Modified MWNT/PVC Composite Materials[J]. Mater. Sci. Eng. A, 2007, 47(2): 136–139Google Scholar
  27. [27]
    Cadek M, Coleman J N, Ryan K P, et al. Reinforcement of Polymers with Carbon Nanotubes: the Role of Nanotube Surface Area[J]. Nano Lett., 2004, 4(2): 353–356CrossRefGoogle Scholar
  28. [28]
    Coleman N J, Khan U, Blau J W, et al. Small but Strong: a Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites[J]. Carbon, 2006, 44: 1 624–1 652CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, Part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryRenmin University of ChinaBeijingChina

Personalised recommendations