Synthesis and Characterization of Carboxyl-terminated Polyethylene Glycol Functionalized Mesoporous Silica Nanoparticles

  • Yu Wang (王瑜)
  • Youyun Wang
  • Wanxia Wang
  • Hongda Zhu
  • Mingxing Liu (刘明星)Email author
Organic Materials


Colloidal mesoporous silica nanoparticles functionalized with carboxy-terminated polyethylene glycol (CMS-PEG-COOH) were successfully synthesized by covalently grafting dicarboxy-terminated polyethylene glycol (HOOC-PEG-COOH) on the surface of the amino functionalized CMS nanoparticles with amide bond as a cross linker. Moreover, the structural and particle properties of CMS-PEG-COOH were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), transmission electron microscopy (TEM), dynamic light scattering (DLS), nitrogen adsorption-desorption measurements, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The nanomaterials presented a relatively uniform spherical shape morphology with diameters of about 120 nm,and favorable dispersibility in weak acid solution. The CMS-PEG-COOH exhibited no changes in the state of amorphous, while the mesopores sizes of 5.25 nm might provide the nanomaterials with large capacity for the loading and releasing of drugs. So the results indicated that CMS-PEG-COOH might be a critical nanomaterial for drug delivery system in the future.

Key words

mesoporous silica nanoparticles polyethylene glycol functionalization carboxy-terminated synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Argyo C, Weiss V, Bräuchle C, et al. ChemInform Abstract: Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery[J]. J. Cheminform, 2013, 26(1): 435–451Google Scholar
  2. [2]
    Liu MX, Hu T, Wang X, et al. Functionalization of Semi–terminated Silica Nanotubes[J]. J. Wuhan. Univ. Technol., 2013, 28(3): 425–428CrossRefGoogle Scholar
  3. [3]
    Yamamoto E, Kuroda K. Colloidal Mesoporous Silica Nanoparticles [J]. Bull. Chem. Soc. Jpn., 2016, 89(5): 501–539CrossRefGoogle Scholar
  4. [4]
    Chen ZR, Zeng X, et al. Preparation and Characterization of Mesoporous Al–MCM–41 Layers Deposited on FeCrAl Metallic Foils by an In–situ Hydrothermal Method[J]. J. Wuhan. Univ. Technol., 2009, 24(1): 1–4CrossRefGoogle Scholar
  5. [5]
    Zhang XF, Guo CL, Wang X, et al. Synthesis and Characterization of Bimodal Mesoporous Silica[J]. J. Wuhan. Univ. Technol., 2012, 27(6): 1 084–1 088CrossRefGoogle Scholar
  6. [6]
    Yang K, Luo H, Zeng M, et al. Intracellular pH–triggered, Targeted Drug Delivery to Cancer Cells by Multifunctional Envelope–type Mesoporous Silica Nanocontainers[J]. ACS. Appl. Mater. Interfaces, 2015, 7(31): 17 399–17 407CrossRefGoogle Scholar
  7. [7]
    Tian Y, Wang Y, Shen S, et al. Temperature and Redox Dual–responsive Biodegradable Nanogels for Optimizing Antitumor Drug Delivery[J]. Part. Part. Syst. Charact., 2015, 32(12): 1 092–1 101CrossRefGoogle Scholar
  8. [8]
    Dong J, Zink JI. Light or Heat? the Origin of Cargo Release from Nanoimpeller Particles Containing Upconversion Nanocrystals under IR Irradiation[J]. Small, 2015, 11(33): 4 165–4 172CrossRefGoogle Scholar
  9. [9]
    Li ZY, Hu JJ, Xu, Q, et al. A Redox–responsive drug Delivery System Based on RGD Containing Peptide–capped Mesoporous Silica Nanoparticles[J]. J. Mater. Chem. B, 2015, 3(1): 39–44CrossRefGoogle Scholar
  10. [10]
    Zhao CX, Yu L, Middelberg APJ. Magnetic Mesoporous Silicananoparticles End–capped with Hydroxyapatite for pH–responsive Drug Release [J]. J. Mater. Chem. B, 2013, 1(37): 4 828–4 833CrossRefGoogle Scholar
  11. [11]
    Aznar E, Villalonga R, Gimenez C, et al. Glucose–triggered Release Using Enzyme–gated Mesoporous Silica Nanoparticles[J]. Chem. Commun., 2013, 49(57): 6 391–6 393CrossRefGoogle Scholar
  12. [12]
    Lai J, Shah BP, Zhang Y, et al. Real–time Monitoring of ATP–responsive Drug Release Using Mesoporous–silica–coated Multicolor Upconversion Nanoparticles[J]. Acs. Nano., 2015, 9(5): 5 234–5 245CrossRefGoogle Scholar
  13. [13]
    Gu J, Su S, Zhu M, et al. Targeted Doxorubicin Delivery to Liver Cancer Cells by PEGylated Mesoporous Silica Nanoparticles with a pH–dependent Release Profile[J]. Micropor. Mesopor. Materials, 2012, 161(5): 160–167CrossRefGoogle Scholar
  14. [14]
    Chen Y, Chen H, Shi J. In vivo Bio–safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles[J]. Adv. Mater., 2013, 25(23): 3 144–3 176CrossRefGoogle Scholar
  15. [15]
    Tang F, Li L, Chen D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery[J]. Adv. Mater., 2012, 43(20): 1 504–1 534CrossRefGoogle Scholar
  16. [16]
    Kibria G, Hatakeyama H, Ohga N, et al. The Effect of Liposomal Size on the Targeted Delivery of Doxorubicin to Integrin αvβ3–expressing Tumor Endothelial Cells[J]. Biomaterials, 2013, 34(22): 5 617–5 627CrossRefGoogle Scholar
  17. [17]
    Wang LS, Wu LC, Lu SY, et al. Biofunctionalized Phospholipid–capped Mesoporous Silica Nanoshuttles for Targeted drug Delivery: Improved Water Suspensibility and Decreased Nonspecific Protein Binding [J]. Acs. Nano., 2010, 4(8): 4 371–4 379CrossRefGoogle Scholar
  18. [18]
    Jürgen G, Amirgoulova EV, Thomas A, et al. Biofunctionalized, Ultrathin Coatings of Cross–linked Star–shaped poly(ethylene oxide) Allow Reversible Folding of Immobilized Proteins[J]. J. Am. Chem. Soc., 2004, 126(13): 4 234–4 239CrossRefGoogle Scholar
  19. [19]
    Feng W, Nie W, He C, et al. Effect of pH–responsive Alginate/Chitosan Multilayers Coating on Delivery Efficiency, Cellular Uptake and Biodistribution of Mesoporous Silica Nanoparticles Based Nanocarriers[J]. ACS. Appl. Mater. Interfaces, 2014, 6(11): 8 447–8 460CrossRefGoogle Scholar
  20. [20]
    He Q, Zhang J, Shi J, et al. The Effect of PEGylation of Mesoporous Silica Nanoparticles on Nonspecific Binding of Serum Proteins and Cellular Responses[J]. Biomaterials, 2010, 31(6): 1 085–1 092CrossRefGoogle Scholar
  21. [21]
    Duncan R. Polymer Conjugates as Anticancer Nanomedicines[J]. Nat. Rev. Cancer, 2006, 6(6): 688–701CrossRefGoogle Scholar
  22. [22]
    Kecht J, Schlossbauer A, Bein T. Selective Functionalization of the Outer and Inner Surfaces in Mesoporous Silica Nanoparticles[J]. Chem. Mater., 2008, 20(23): 7 207–7 214CrossRefGoogle Scholar
  23. [23]
    Kobler J, Möller K, Bein T. Colloidal Suspensions of Functionalized Mesoporous Silica Nanoparticles[J]. Acs. Nano., 2008, 2(2): 791–799CrossRefGoogle Scholar
  24. [24]
    Cauda V, Argyo C, Bein T. Impact of Different PEGylation Patterns on the Long–term Bio–stability of Colloidal Mesoporous Silica Nanoparticles [J]. J. Mater. Chem., 2010, 20(39): 8 693–8 699CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu Wang (王瑜)
    • 1
  • Youyun Wang
    • 1
  • Wanxia Wang
    • 1
  • Hongda Zhu
    • 1
  • Mingxing Liu (刘明星)
    • 1
    Email author
  1. 1.Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial MicrobiologyHubei University of TechnologyWuhanChina

Personalised recommendations