Characterization of Stress Concentration by Tangential Component Hp(x) of Metal Magnetic Memory Signals

  • Meili Fu (付美礼)
  • Sheng Bao (包胜)Email author
  • Huangjie Lou
Metallic Materials


The correlation between the stress concentration and the spontaneous magnetic signals of metal magnetic memory (MMM) was investigated via tensile tests. Sheet specimens of the Q235 steel were machined into standard bars with rectangular holes to obtain various stress concentration factors. The tangential component Hp(x) of MMM signals and its related magnetic characteristic parameters throughout the loading process were presented and analyzed. It is found that the tangential component Hp(x) is sensitive to the abnormal magnetic changes caused by the local stress concentration in the defect area. The minimum magnetic field is positively correlated to the magnitude of the load and the distance from the notch. The tangential magnetic stress concentration factor presents good numerical stability during the entire loading process, and can be used to evaluate the stress concentration factor. The results obtained will be a complement to the MMM technique.

Key words

metal magnetic memory tangential component stress concentration tensile test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Doubov AA. Screening of Weld Quality Using the Magnetic Metal Memory Effect[J]. Weld. World, 1998, 41(3): 196–199Google Scholar
  2. [2]
    Doubov AA. The Express Technique of Welded Joints Examination with Use of Metal Magnetic Memory[J]. NDT&E Int., 2000, 33(6): 351–362CrossRefGoogle Scholar
  3. [3]
    Yang E, Li LM, Chen X. Magnetic Field Aberration Induced by Cycle Stress[J]. J. Magn. Magn. Mater., 2007, 312(1): 72–77CrossRefGoogle Scholar
  4. [4]
    Huang SL, Li LM, Shi KR, et al. Magnetic Field Properties Caused by Stress Concentration[J]. J. Cent South. Univ., 2004, 11(1): 23–26CrossRefGoogle Scholar
  5. [5]
    Wang HP, Dong LH, Dong SY, et al. Fatigue Damage Evaluation by Metal Magnetic Memory Testing[J]. J. Cent South. Univ., 2014, 21(1): 65–70CrossRefGoogle Scholar
  6. [6]
    Roskosz M, Gawrilenko P. Analysis of Changes in Residual Magnetic Field in Loaded Notched Samples[J]. NDT&E Int., 2008, 41(7): 570–576CrossRefGoogle Scholar
  7. [7]
    Shi CL, Dong SY, Xu BS, et al. Metal Magnetic Memory Effect Caused by Static Tension Load in a Case–hardened Steel[J]. J. Magn. Magn. Mater., 2010, 322(4): 413–416CrossRefGoogle Scholar
  8. [8]
    Dong LH, Xu BS, Dong SY, et al. Stress Dependence of the Spontaneous Stray Field Signals of Ferromagnetic steel [J]. NDT&E Int., 2009, 42(4): 323–327CrossRefGoogle Scholar
  9. [9]
    Yao K, Wang ZD, Deng B, et al. Experimental Research on Metal Magnetic Memory Method[J]. Exp. Mech., 2012, 52(3): 305–314CrossRefGoogle Scholar
  10. [10]
    Leng JC, Xu MQ, Xu MX, et al. Magnetic Field Variation Induced by Cyclic Bending Stress[J]. NDT&E Int., 2009, 42(5): 410–414CrossRefGoogle Scholar
  11. [11]
    Huang HH, Jiang SL, Liu RJ, et al. Investigation of Magnetic Memory Signals Induced by Dynamic Bending Load in Fatigue Crack Propagation Process of Structural Steel[J]. J. Nondestruct. Eval., 2014, 33(3): 407–412CrossRefGoogle Scholar
  12. [12]
    Shi CL, Dong SY, Xu BS, et al. Stress Concentration Degree Affects Spontaneous Magnetic Signals of Ferromagnetic Steel under Dynamic Tension Load[J]. NDT&E Int., 2010, 43(1): 8–12CrossRefGoogle Scholar
  13. [13]
    Huang HH, Jiang SL, Chen Y, et al. Stress Concentration Impact on the Magnetic Memory Signal of Ferromagnetic Structural Steel[J]. Nondestruct. Test. Eva., 2014, 29(4): 377–390CrossRefGoogle Scholar
  14. [14]
    Dong LH, Xu BS, Dong SY, et al. Characterisation of Stress Concentration of Ferromagnetic Materials by Metal Magnetic Memory Testing [J]. Nondestruct. Test. Eva., 2010, 25(2): 145–151CrossRefGoogle Scholar
  15. [15]
    Wang ZD, Yao K, Deng B, et al. Quantitative Study of Metal Magnetic Memory Signal Versus Local Stress Concentration[J]. NDT&E Int., 2010, 43(6): 513–518CrossRefGoogle Scholar
  16. [16]
    Yao K, Deng B, Wang ZD. Numerical Studies to Signal Characteristics with the Metal Magnetic Memory–effect in Plastically Deformed Samples [J]. NDT&E Int., 2012, 47: 7–17CrossRefGoogle Scholar
  17. [17]
    Jiles DC. Theory of the Magnetomechanical Effect[J]. J. Phys. D Appl. Phys., 1995, 28(8): 1 537–1 546CrossRefGoogle Scholar
  18. [18]
    Förster F. Nondestructive Inspection by the Method of Magnetic Leakage Fields: Theoretical and Experimental Foundations of the Detection of Surface Cracks of Finite and Infinite Depth[J]. Sov. J. Nondestr. Test., 1982, 8(11): 841–59Google Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meili Fu (付美礼)
    • 1
    • 2
  • Sheng Bao (包胜)
    • 1
    Email author
  • Huangjie Lou
    • 1
  1. 1.Institute of Structural EngineeringZhejiang UniversityHangzhouChina
  2. 2.Seazen Holding Co., LtdShanghaiChina

Personalised recommendations