Electronic, Thermal Expanding, and Optical Absorption Properties of Transition Metal Dichalcogenides: A First-principles Study

  • Hui Zhang (张会)
  • Yanbin Wu (吴延斌)Email author
Advanced Materials


A comprehensive investigation was made on the electronic structure, thermal expansion coefficient and light absorption spectrum of total six transition metal dichalcogenides (TMDs) compounds with formula of MX2 (M=Mo, W, Cr, X=S, Se). First, an indirect-direct band gap transition from bulk to singlelayer was declared for all the six compounds. Moreover, the detailed lattice constants and thermal expansion coefficients provided in the paper were the key information for designing MX2-based field effect transistors. Finally, the calculated optical absorption spectra demonstrate that these compounds can effectively utilize solar energy and are good photo catalyst candidates. All these present findings will benefit the design of new generation of novel two-dimensional materials.

Key words

first-principles electronic structure thermal expansion light absorption index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lu J, Yeo PSE, Zheng Y, et al. Step Flow Versus Mosaic Film Growth in Hexagonal Boron Nitride[J]. J. Am. Chem. Soc., 2013, 135(6): 2 368–2 373CrossRefGoogle Scholar
  2. [2]
    Gao JF, Zhao JJ, Ding F. Transition Metal Surface Passivation Induced Graphene Edge Reconstruction[J]. J. Am. Chem. Soc., 2012, 134(14): 6 204–6 209CrossRefGoogle Scholar
  3. [3]
    Luo X, Yang J, Liu H, et al. Predicting Two–Dimensional Boron–Carbon Compounds by the Global Optimization Method[J]. J. Am. Chem. Soc., 2011, 133(40): 16 285–16 290CrossRefGoogle Scholar
  4. [4]
    Chen YF, Xi JY, Dumcenco DO, et al. Tunable Band–Gap Photoluminescence from Atomically Thin Transition–Metal Dichalcogenide Alloys[J]. ACS Nano, 2013, 7(5): 4 610–4 616CrossRefGoogle Scholar
  5. [5]
    Ataca C, Şahin H, Ciraci S. Stable, Single–Layer MX2 Transition–Metal Oxides and Dichalcogenides in a Honeycomb–Like Structure[J]. J. Phys. Chem. C, 2012, 116(16): 8 983–8 999CrossRefGoogle Scholar
  6. [6]
    Conley H, Wang B, Ziegler J, et al. Bandgap Engineering of Strained Monolayer and Bilayer MoS2[J]. Nano Lett., 2013, 13(8): 3 626–3 630CrossRefGoogle Scholar
  7. [7]
    Ma YD, Dai Y, Guo M, et al. Evidence of the Existence of Magnetism in Pristine VX2 Monolayers (X = S, Se) and Their Strain–Induced Tunable Magnetic Properties[J]. ACS Nano, 2012, 6(2): 1 695–1 701CrossRefGoogle Scholar
  8. [8]
    Nicholas AL, Adam JS, Saroj KN. Strain Engineering the Work Function in Monolayer Metal Dichalcogenides[J]. J. Phys.: Condens. Matter, 2015, 27(17): 175 501–175 506Google Scholar
  9. [9]
    Xiang Q, Yu J, Jaroniec M. Synergetic Effect of MoS2 and Graphene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(15): 6 575–6 578CrossRefGoogle Scholar
  10. [10]
    Yu Z, Ong Z–Y, Li S, et al. Analyzing the Carrier Mobility in Transition–Metal Dichalcogenide MoS2 Field–Effect Transistors[J]. Adv. Funct. Mater., 2017, 27(19): 1 604 093–1 604 109CrossRefGoogle Scholar
  11. [11]
    Fang H, Chuang S, Chang TC, et al. High–Performance Single Layered WSe2 p–FETs with Chemically Doped Contacts[J]. Nano Lett., 2012, 12(7): 3 788–3 792CrossRefGoogle Scholar
  12. [12]
    Zhang H, Liu L–M, Lau W–M. Dimension–dependent Phase Transition and Magnetic Property of VS2[J]. J. Mater. Chem. A, 2013, 1: 10 821–10 828CrossRefGoogle Scholar
  13. [13]
    King LA, Zhao W, Chhowalla M, et al. Photoelectrochemical Properties of Chemically Exfoliated MoS2[J]. J. Mater. Chem. A, 2013, 1(31): 8 935–8 941CrossRefGoogle Scholar
  14. [14]
    Kresse G, Furthmüller J. Efficiency of ab–initio Total Energy Calculations for Metals and Semiconductors Using a Plane–wave Basis Set[J]. Comput. Mater. Sci., 1996, 6(1): 15–50CrossRefGoogle Scholar
  15. [15]
    Kresse G, Furthmüller J. Efficient Iterative Schemes for ab Initio Total–energy Calculations Using a Plane–wave Basis Set[J]. Phys. Rev. B, 1996, 54(16): 11 169–11 186CrossRefGoogle Scholar
  16. [16]
    Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996, 77(18): 3 865–3 868CrossRefGoogle Scholar
  17. [17]
    Kresse G, Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented–wave Method[J]. Phys. Rev. B, 1999, 59(3): 1 758–1 775CrossRefGoogle Scholar
  18. [18]
    Monkhorst HJ, Pack JD. Special Points for Brillouin–zone Integrations [J]. Phys. Rev. B, 1976, 13(12): 5 188–5 192CrossRefGoogle Scholar
  19. [19]
    Wu X, Vargas MC, Nayak S, et al. Towards Extending the Applicability of Density Functional Theory to Weakly Bound Systems[J]. J. Chem. Phys., 2001, 115(19): 8 748–8 757CrossRefGoogle Scholar
  20. [20]
    Nicolosi V, Chhowalla M, Kanatzidis MG, et al. Liquid Exfoliation of Layered Materials[J]. Science, 2013, 340(6139): 1 226 419CrossRefGoogle Scholar
  21. [21]
    Andersen A, Kathmann SM, Lilga MA, et al. First–Principles Characterization of Potassium Intercalation in Hexagonal 2H–MoS2[J]. J. Phys. Chem. C, 2012, 116(2): 1 826–1 832CrossRefGoogle Scholar
  22. [22]
    Ataca C, Ciraci S. Functionalization of Single–Layer MoS2 Honeycomb Structures[J]. J. Phys. Chem. C, 2011, 115(27): 13 303–13 311CrossRefGoogle Scholar
  23. [23]
    Togo A, Oba F, Tanaka I. First–principles Calculations of the Ferroelastic Transition between Rutile–type and CaCl2–type SiO2 at High Pressures[J]. Phys. Rev. B, 2008, 78(13): 134 106CrossRefGoogle Scholar
  24. [24]
    Sheetz RM, Ponomareva I, Richter E, et al. Defect–induced Optical Absorption in the Visible Range in ZnO Nanowires[J]. Phys. Rev. B, 2009, 80(19): 195 314CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Normal CollegeShenyang UniversityShenyangChina
  2. 2.Beijing Computational Science Research CenterBeijingChina

Personalised recommendations