Effects of Thickness on the Electrical Conductivity of Sputtered YSZ Film with Nanocrystalline Columnar Microstructure

  • Qingqing Yang (杨青青)
  • Zuoliang Lin
  • Bin Meng (孟彬)
  • Xinkun Zhu
  • Feng Yang
  • Shan Wu
Advanced Materials


In order to investigate the effect of the thickness on the electrical conductivity of yttria-stabilized zirconia (YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared by magnetron sputtering through controlling the deposition time. All the sputtered films with different thicknesses consist of the main phase of cubic YSZ as well as a small amount of monoclinic YSZ. The thicker films exhibit a typical columnar grain structure based on the fractured cross-sectional SEM observations. The average diameters of columnar grains increase from about 40 nm to 100 nm with the film thickness from 0.67 μm to 2.52 μm according to TEM analysis. The thinnest YSZ film with 0.67 μm thickness shows the highest apparent electrical conductivity in the four films in 400–800 °C due to the contribution from the highly conductive film/substrate interfacial region. On the other hand, the real electrical conductivities of YSZ films increase with film thickness from 0.67 μm to 2.52 μm after eliminating the contribution of the film/substrate interface. The increasing film thickness leads to the grain growth as well as the decrement in the volumetric fraction of the resistive columnar grain boundary and a consequent higher real electrical conductivity.

Key words

YSZ film columnar microstructure magnetron sputtering interface effect space charge effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Han MF, Tang XL, Shao W. The Properties of YSZ Electrolyte Sintering at 1300 °C[J]. J. Wuhan Univ. Technol.–Mater. Sci. Ed., 2008, 23 (6): 775–778Google Scholar
  2. [2]
    Guo X, Waser R. Electrical Properties of the Grain Boundaries of Oxygen Ion Conductors: Acceptor–doped Zirconia and Ceria[J]. Prog. Mater. Sci., 2006, 51: 151–210CrossRefGoogle Scholar
  3. [3]
    Han MF, Li BT, Peng SP. Manufacture Process of 8Y2O3 Stabilized ZrO2 from Nano Powders[J]. J. Wuhan Univ. Technol.–Mater. Sci. Ed., 2004, 19 (3): 10–13Google Scholar
  4. [4]
    Joo JH, Choi GM. Electrical Conductivity of YSZ Film Grown by Pulsed Laser Deposition[J]. Solid State Ionics, 2006, 177: 1 053–1 057CrossRefGoogle Scholar
  5. [5]
    Solovyev AA, Sochugov NS, Rabotkin SV. Application of PVD Methods to Solid Oxide Fuel Cells[J]. Appl. Surf. Sci., 2014, 310: 272–277CrossRefGoogle Scholar
  6. [6]
    Infortuna A, Harvey AS, Gauckler LJ. Microstructures of CGO and YSZ Thin Films by Pulsed Laser Deposition[J]. Adv. Funct. Mater., 2008, 18: 127–135CrossRefGoogle Scholar
  7. [7]
    Li CJ, Li CX, Xing YZ, et al. Influence of YSZ Electrolyte Thickness on the Characteristics of Plasma–sprayed Cermet Supported Tubular SOFC. Solid State Ionics, 2006, 177: 2 065–2 069CrossRefGoogle Scholar
  8. [8]
    Zhao W, Kim IJ, Gong J. Influence of Thickness on the Electrical Conductivity of YSZ Electrolytes[J]. J. Ceram. Soc. Jpn., 2010, 118: 550–554CrossRefGoogle Scholar
  9. [9]
    Maier J. Defect Chemistry and Ion Transport in Nanostructured Materials: Part II. Aspects of Nanoionics[J]. Solid State Ionics, 2003, 157: 327–334CrossRefGoogle Scholar
  10. [10]
    Sillassen M, Eklund P, Pryds N, et al. Low–Temperature Superionic Conductivity in Strained Yttria–Stabilized Zirconia[J]. Adv. Funct. Mater., 2010, 20: 2 071–2 076CrossRefGoogle Scholar
  11. [11]
    Mondal P, Klein A, Jaegermann W, et al. Enhanced Specific Grain Boundary Conductivity in Nanocrystalline Y2O3–Stabilized Zirconia[J]. Solid State Ionics, 1999, 118: 331–339CrossRefGoogle Scholar
  12. [12]
    Kosacki I, Rouleau CM, Becher PF, et al. Nanoscale Effects on the Ionic Conductivity in Highly Textured YSZ Thin Films[J]. Solid State Ionics, 2005, 176: 1 319–1 326CrossRefGoogle Scholar
  13. [13]
    Guo X, Vasco E, Mi SB, et al. Ionic Conduction in Zirconia Films of Nanometer Thickness[J]. Acta Mater., 2005, 53: 5 161–5 166CrossRefGoogle Scholar
  14. [14]
    Schichtel N, Korte C, Hesse D, et al. Elastic Strain at Interfaces and Its Influence on Ionic Conductivity in Nanoscaled Solid Electrolyte Thin Films–theoretical Considerations and Experimental Studies[J]. Phys. Chem. Chem. Phys., 2009, 11: 3 043–3 048CrossRefGoogle Scholar
  15. [15]
    Korte C, Schichtel N, Hesse D, et al. Influence of Interface Structure on Mass Transport in Phase Boundaries between Different Ionic Materials [J]. Monatsh. Chem., 2009, 140: 1 069–1 080CrossRefGoogle Scholar
  16. [16]
    Jiang J, Hu XC, Shen WD, et al. Improved Ionic Conductivity in Strained Yttria–stabilized Zirconia Thin Films[J]. Appl. Phys. Lett., 2013, 102: 143 901–143 904CrossRefGoogle Scholar
  17. [17]
    Guo X, Zhang Z. Grain Size Dependent Grain Boundary Defect Structure: Case of Doped Zirconia[J]. Acta Mater., 2003, 51: 2 539–2 547CrossRefGoogle Scholar
  18. [18]
    Schlupp MVF, Scherrer B, Ma H, et al. Influence of Microstructure on the Cross–plane Oxygen Ion Conductivity of Yttria Stabilized Zirconia Thin Films[J]. Phys. Status Solidi A, 2012, 209 (8): 1 414–1 422Google Scholar
  19. [19]
    Avila–Paredes HJ, Kim S. The Effect of Segregated Transition Metal Ions on the Grain Boundary Resistivity of Gadolinium Doped Ceria: Alteration of the Space Charge Potential[J]. Solid State Ionics, 2006, 177: 3 075–3 080CrossRefGoogle Scholar
  20. [20]
    Gerstl M, Navickas E, Friedbacher G, et al. The Separation of Grain and Grain Boundary Impedance in Thin Yttria Stabilized Zirconia (YSZ) Layers[J]. Solid State Ionics, 2011, 185: 32–41CrossRefGoogle Scholar
  21. [21]
    Kosacki I, Suzuki T, Petrovsky V, et al. Electrical Conductivity of Nanocrystalline Ceria and Zirconia Thin Films[J]. Solid State Ionics, 2000, 136: 1 225–1 233CrossRefGoogle Scholar
  22. [22]
    Kosacki I, Rouleau CM, Becher PF, et al. Surface/Interface–Related Conductivity in Nanometer Thick YSZ Films[J]. Electrochem. and Solid–State Lett., 2004, 7 (12): A459–A461Google Scholar
  23. [23]
    Uvarov NF. Estimation of Composites Conductivity Using a General Mixing Rule[J]. Solid State Ionics, 2000, 136–137: 1 267–1 272Google Scholar
  24. [24]
    Guo X. Can We Achieve Significantly Higher Ionic Conductivity in Nanostructured Zirconia[J]. Scr. Mater., 2011, 65: 96–101CrossRefGoogle Scholar
  25. [25]
    De Souza RA, Pietrowski MJ, Anselmi–Tamburini U, et al. Oxygen Diffusion in Nanocrystalline Yttria–stabilized Zirconia: The Effect of Grain Boundaries[J]. Phys. Chem. Chem. Phys., 2008, 10: 2 067–2 072CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qingqing Yang (杨青青)
    • 1
  • Zuoliang Lin
    • 1
  • Bin Meng (孟彬)
    • 1
  • Xinkun Zhu
    • 1
  • Feng Yang
    • 1
  • Shan Wu
    • 1
  1. 1.Faculty of Materials Science & EngineeringKunming University of Science & TechnologyKunmingChina

Personalised recommendations