3D Interconnected MoO2 Nanocrystals on Nickel Foam as Binder-free Anode for Li-ion Batteries

  • Yanyuan Qi (祁琰媛)Email author
  • Bo Zhou
  • Shenbo Zheng
  • Xue Yang
  • Wei Jin
Advanced Materials


MoO2 nanocrystals (NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO2 nanocrystals (about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g-1 and retain a reversible capacity of 924 mAh· g-1 after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g-1 (about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.

Key words

MoO2 nanocrystals 3D architecture binder-free anode lithium-ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Wang Z, Mo J, Wu Y, et al. Synthesis of Lithium Garnet Oxides of the Compositions Series Li7–xLa3Zr2–xTaxO12[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1 261–1 264CrossRefGoogle Scholar
  2. [2]
    He J, Long F, Peng D, et al. Ribbon–like Cu doped V6O13 as Cathode Material for High–performance Lithium Ion Batteries[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1 397–1 401CrossRefGoogle Scholar
  3. [3]
    Liu HD, Huang JM, Li X, et al. Graphene as a High–capacity Anode Material for Lithium Ion Batteries[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2013, 28: 220–223CrossRefGoogle Scholar
  4. [4]
    Li D, Li X, Wang S, et al. Carbon–wrapped Fe3O4 Nanoparticle Films grown on Nickel Foam as Binder–free Anodes for High–rate and Long–life Lithium Storage[J]. ACS Appl. Mater. Interfaces, 2014, 6: 648–654CrossRefGoogle Scholar
  5. [5]
    Chen HX, Zhang QB, Wang JX, et al. Improved Lithium Ion Battery Performance by Mesoporous Co3O4 Nanosheets Grown on Self–standing NiSix Nanowires on Nickel Foam[J]. J. Mater. Chem. A, 2014, 2: 8 483–8 490CrossRefGoogle Scholar
  6. [6]
    Ponrouch A, Sevilla M, Marchante E, et al. Facile Synthesis of Graphitic Carbons Decorated with SnO2 Nanoparticles and Their Application as High Capacity Lithium–ion Battery Anodes[J]. J. Appl. Electrochem., 2012, 42: 901–908CrossRefGoogle Scholar
  7. [7]
    Cabana J, Monconduit L, Larcher D, et al. Beyond Intercalation–based Li–ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions[J]. Adv. Mater., 2010, 22: E170–E192Google Scholar
  8. [8]
    Zeng LX, Zheng C, Deng CL, et al. MoO2–ordered Mesoporous Carbon Nanocomposite as an Anode Material for Lithium–ion Batteries[J]. ACS Appl. Mater. Interfaces, 2013, 5: 2 182–2 187CrossRefGoogle Scholar
  9. [9]
    Ni J, Zhao Y, Li L, et al. Ultrathin MoO2 Nanosheets for Superior Lithium Storage[J]. Nano Energy, 2015, 11: 129–135CrossRefGoogle Scholar
  10. [10]
    Chen H, Ma T, Zeng Y, et al. Mechanism of Capacity Fading Caused by Mn (II) Deposition on Anodes for Spinel Lithium Manganese Oxide cell[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 1–10CrossRefGoogle Scholar
  11. [11]
    Wang Y, Zhao S, et al. Synthesis and Properties of Li2MnSiO4/C cathode Materials for Li–ion Batteries[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2016, 31: 945–949CrossRefGoogle Scholar
  12. [12]
    Liu Y, Zhang H, Ouyang P, et al. One–pot Hydrothermal Synthesized MoO2 with High Reversible Capacity for Anode Application in Lithium Ion Battery[J]. Electrochim. Acta, 2013, 102: 429–435CrossRefGoogle Scholar
  13. [13]
    Guo B, Fang X, Li B, et al. Synthesis and Lithium Storage Mechanism of Ultrafine MoO2 Nanorods[J]. Chem. Mater., 2012, 24: 457–463CrossRefGoogle Scholar
  14. [14]
    Zhou L, Wu HB, Wang Z Y, et al. Interconnected MoO2 Nanocrystals with Carbon Nanocoating as High–capacity Anode Materials for Lithium–ion Batteries[J]. ACS Appl. Mater. Interfaces, 2011, 3: 4 853–4 857CrossRefGoogle Scholar
  15. [15]
    Zhai WK, Xu YM, Cheng X L, et al. Facile Synthesis of Monodisperse Hierarchical MoO2 Porous Spheres for High–performance Li–ion Battery [J]. Mater. Lett., 2015, 145: 287–290CrossRefGoogle Scholar
  16. [16]
    Wang X, Yong Y, Bo H, et al. Protein–mediated Layer–by–layer Synthesis of TiO2(B)/Anatase/Carbon Coating on Nickel Foam as Negative Electrode Material for Lithium–ion Battery[J]. ACS Appl. Mater. Interfaces, 2013, 5: 3 631–3 637CrossRefGoogle Scholar
  17. [17]
    Xiong L, Teng Y, Wu Y, et al. Large–scale Synthesis of Aligned Co3O4 Nanowalls on Nickel Foam and Their Electrochemical Performance for Li–ion Batteries[J]. Ceram. Int., 2014, 40: 15 561–15 168CrossRefGoogle Scholar
  18. [18]
    Gao C, Zhao H, Lv P, et al. Engineered Si Sandwich Electrode: Si Nanoparticles/graphite Sheet Hybrid on Ni Foam for Next–generation High–performance Lithium–ion Batteries[J]. ACS Appl. Mater. Interfaces, 2015, 7: 1 693–1 698CrossRefGoogle Scholar
  19. [19]
    Zhang W, Zhu J, Ang H, et al. Binder–free Graphene Foams for O2 Electrodes of Li–O2 Batteries[J]. Nanoscale, 2013, 5: 9 651–9 664CrossRefGoogle Scholar
  20. [20]
    Yang C, Zhang D, Zhao Y, et al. Nickel Foam Supported Sn–Co Alloy Film as Anode for Lithium Ion Batteries[J]. J. Power Sources, 2011, 196: 10 673–10 678CrossRefGoogle Scholar
  21. [21]
    Zhou Y, Liu Q, Liu DB, et al. Carbon–coated MoO2 Dispersed in Three–dimensional Graphene Aerogel for Lithium–ion Battery[J]. Electrochim. Acta, 2015, 174: 8–14CrossRefGoogle Scholar
  22. [22]
    Guo W, Sun W, Wang Y. Multilayer CuO@NiO Hollow Spheres: Microwave–assisted Metal–organic–framework Derivation and Highly Reversible Structure–matched Stepwise Lithium Storage[J]. ACS Nano, 2015, 9: 11 462–11 471CrossRefGoogle Scholar
  23. [23]
    Xia FF, Hu XL, Sun YM, et al. Layer–by–layer Assembled MoO–Graphene thin Film as a High–capacity and Binder–free Anode for Lithium–ion Batteries[J]. Nanoscale, 2012, 4: 4 707–4 711CrossRefGoogle Scholar
  24. [24]
    Wang S, Li Q, Pu W, et al. MoO3–MnO2 Intergrown Nanoparticle Composite Prepared by One–step Hydrothermal Synthesis as Anode for Lithium Ion Batteries[J]. J. Alloy. Compd., 2015, 663: 148–155CrossRefGoogle Scholar
  25. [25]
    Wei Y, Yan F, Tang X, et al. Solvent–controlled Synthesis of NiO–CoO/Carbon Fiber Nanobrushes with Different Densities and Their Excellent Properties for Lithium Ion Storage[J]. ACS Appl. Mater. Interfaces, 2015, 185: 21 703–21 711CrossRefGoogle Scholar
  26. [26]
    Jia X, Chen Z, Cui X, et al. Building Robust Architectures of Carbon and Metal Oxide Nanocrystals Toward High–performance Anodes for Lithium–ion Batteries[J]. ACS Nano, 2012, 6: 9 911–9 919CrossRefGoogle Scholar
  27. [27]
    Jung YS, Lee S, Ahn D, et al. Electrochemical Reactivity of Ballmilled MoO3–y as Anode Materials for Lithium–ion batteries[J]. J. Power Sources, 2009, 188: 286–191CrossRefGoogle Scholar
  28. [28]
    Ku JH, Jung YS, Lee KT, et al. Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries[J]. J. Electrochem. Soc., 2009, 156: A688–A693Google Scholar
  29. [29]
    Zhang SS, Xu K, Jow TR. Electrochemical Impedance Study on the Low Temperature of Li–ion Batteries[J]. Electrochim. Acta, 2004, 49: 1 057–1 061CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yanyuan Qi (祁琰媛)
    • 1
    Email author
  • Bo Zhou
    • 2
  • Shenbo Zheng
    • 2
  • Xue Yang
    • 2
  • Wei Jin
    • 2
  1. 1.Center for Materials Research and AnalysisWuhan University of TechnologyWuhanChina
  2. 2.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations