Preparation of Rod-like Aluminum Doped Zinc Oxide Powders by Sol-gel Technique Using Metal Chlorides and Acetylacetone Precursors

  • Javad KeshtkarEmail author
  • Jorge Roberto Vargas Garcia
  • Jorge Galaviz Perez
  • José Martinez Trinidad
Advanced Materials


Al-doped ZnO (AZO) powders were prepared by using metal chloride precursors and the sol-gel technique. IR peaks observed at 1590 cm-1 and 1620 cm-1 indicated the formation of metal chelate as a consequence of the addition of acetylacetone to the metal chloride solution. TG-DSC analysis of the AZO gels confirmed the formation of metal chelate as evidenced by the development of several weight loss peaks accompanied by the introduction of new endothermic peaks. The resulting AZO gels were annealed at 500, 600, and 800 °C to study the effect of annealing temperature. XRD and SEM results showed that crystallization of AZO gels takes place around 600 °C. Hexagonal wurtzite structure was identified as the main phase for all the samples. In addition, small shift of the XRD (002) peak coupled with XPS results from the AZO powders confirmed the successful doping of the ZnO powders. Micron sized rod-like AZO powders were uniform in dimension and morphology and remained stable even at 800 °C.

Key words

aluminum doped ZnO rod-like metal chloride sol gel acetylacetone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was financially supported by Instituto Politécnico Nacional through the project SIP-IPN- 20182176. The authors would like to thank Centro de Nanociencias y Micro y Nanotecnologías-IPN for the analytical methods. One of the authors Keshtkar J wishes to thank National Council of Science and Technology of México (CONACYT) the scholarship for doctoral studies.


  1. [1]
    Djurisic AB, et al. ZnO nanostructures: Growth, Properties and Applications [J]. Materials Chemistry, 2012, 22(14): 6 526–6 535CrossRefGoogle Scholar
  2. [2]
    Park WI, et al. ZnO Nanorod Logic Circuits[J]. Advanced Materials, 2005, 17(11): 1 393–1 397CrossRefGoogle Scholar
  3. [3]
    Wang L, et al. ZnO Nanorod Gas Sensor for Ethanol Detection[J]. Sensors & Actuators: B.Chemical, 2012, 162(1): 237–243CrossRefGoogle Scholar
  4. [4]
    Chen JH, et al. Stacking Fault Directed Growth of Thin ZnO Nanobelt [J]. Materials Letters, 2008, 62(15): 2 369–2 371CrossRefGoogle Scholar
  5. [5]
    Pan ZW, Dai ZR, and Wang ZL. Nanobelts of Semiconducting Oxides [J]. Science, 2001, 291(5510): 1 947–1 949CrossRefGoogle Scholar
  6. [6]
    Long T, et al. Synthesis and Characterization of ZnO Nanorods and Nanodisks from Zinc Chloride Aqueous Solution[J]. Nanoscale Research Letters, 2009, 4(3): 247–253CrossRefGoogle Scholar
  7. [7]
    Panda D and T–Y Tseng. One–dimensional ZnO Nanostructures: Fabrication, Optoelectronic Properties, and Device Applications[J]. Materials Science, 2013, 48(20): 6 849–6 877CrossRefGoogle Scholar
  8. [8]
    Yan C, et al. Tube Formation in Nanoscale Materials[J]. Nanoscale Research Letters, 2008, 3(12): 473–480CrossRefGoogle Scholar
  9. [9]
    Rani S, et al. Synthesis of Nanocrystalline ZnO Powder via Sol–gel Route for Dye–sensitized Solar Cells[J]. Solar Energy Materials and Solar Cells, 2008, 92(12): 1 639–1 645CrossRefGoogle Scholar
  10. [10]
    Fageria P, Gangopadhyay S, and Pande S. Synthesis of ZnO/Au and ZnO/Ag Nanoparticles and Their Photocatalytic Application Using UV and Visible Light[J]. RSC Advances, 2014, 4(48): 24 962CrossRefGoogle Scholar
  11. [11]
    Wolf N, et al. Stabilization of Aluminum Doped Zinc Oxide Nanoparticle Suspensions and Their Application in Organic Solar Cells[J]. Thin Solid Films, 2014, 564: 213–217CrossRefGoogle Scholar
  12. [12]
    Zhang Y, et al. Optical and Electrical Properties of Aluminum–doped Zinc Oxide Nanoparticles[J]. Materials Science, 2011, 46(3): 774–780CrossRefGoogle Scholar
  13. [13]
    Pál E and Dékány I. Structural, optical and Photoelectric Properties of Indium–doped Zinc Oxide Nanoparticles Prepared in Dimethyl Sulphoxide [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 318(1): 141–150CrossRefGoogle Scholar
  14. [14]
    Park SH, Park JB, and Song PK. Characteristics of Al–doped, Gadoped and In–doped zinc–oxide Films as Transparent Conducting Electrodes in Organic Light–emitting Diodes[J]. Current Applied Physics, 2010, 10(3): S488–S490Google Scholar
  15. [15]
    Gordon T, Grinblat J, and Margel S. Preparation of “Cauliflower–Like” ZnO Micron–Sized Particles[J]. Materials, 2013, 6(11): 5 234–5 246CrossRefGoogle Scholar
  16. [16]
    Jood P, et al. Al–doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties[J]. Nano Letters, 2011, 11(10): 4 337CrossRefGoogle Scholar
  17. [17]
    Wang H, et al. High Performance AZO Thin Films Deposited by RF Magnetron Sputtering at Low Temperature[J]. Recent Patents on Materials Science, 2015, 8(3): 260–264CrossRefGoogle Scholar
  18. [18]
    Xu Y, Ma PH, and Liu MN. Envelope Method Applied on the AZO Thin Films[J]. Applied Mechanics and Materials, 2012, 268–270: 202Google Scholar
  19. [19]
    Wu, H–W and C–H Chu. Structural and Optoelectronic Properties of AZO/Mo/AZO Thin Films Prepared by Rf Magnetron Sputtering[J]. Materials Letters, 2013. 105: 65–67Google Scholar
  20. [20]
    Lo S–S, et al. Raman Scattering and Band–gap Variations of Al–doped ZnO Nanoparticles Synthesized by a Chemical Colloid Process[J]. Physics D: Applied Physics, 2009. 42(9): 095420Google Scholar
  21. [21]
    Zamiri R, et al. Structural and Dielectric Properties of Al–doped ZnO Nanostructures[J]. Ceramics International, 2014, 40(4): 6 031–6 036CrossRefGoogle Scholar
  22. [22]
    Raj Mohan R, Sambath K, and Rajendran K. Experimental Investigation on Structural and Optical Properties of ZnO: AZO Nano Particles by Hydrothermal Synthesis[J]. Materials Science: Materials in Electronics, 2015, 26(3): 1 748–1 755Google Scholar
  23. [23]
    Xu C, et al. Effect of Urea on the Dispersibility and Crystallisation of AZO Nanoparticles Prepared by Sol–gel Combustion[J]. Micro & Nano Letters, 2011, 6(10): 855–857CrossRefGoogle Scholar
  24. [24]
    Zhang P, et al. Aluminum–doped Zinc Oxide Powders: Synthesis, Properties and Application[J]. Materials Science: Materials in Electronics, 2014, 25(2): 678–692Google Scholar
  25. [25]
    Efafi B, et al. Aluminum Doped ZnO Sol–gel Derived Nanocrystals: Raman Spectroscopy and Solid Solubility Characterization: Aluminum Doped ZnO Sol–gel Derived Nanocrystals[J]. Physica Status Solidi (a), 2014, 211(10): 2 426–2 430CrossRefGoogle Scholar
  26. [26]
    Nishio K, et al. Preparation of Highly Oriented Thin Film Exhibiting Transparent Conduction by the Sol–gel Process[J]. Materials Science, 1996, 31(14): 3 651–3 656CrossRefGoogle Scholar
  27. [27]
    Papet P, et al. Transparent Monolithic Zirconia Gels: Effects of Acetylacetone Content on Gelation[J]. Materials Science, 1989, 24(11): 3 850–3 854CrossRefGoogle Scholar
  28. [28]
    Zak AK, et al. Effects of Annealing Temperature on Some Structural and Optical Properties of ZnO Nanoparticles Prepared by a Modified Sol–gel Combustion Method[J]. Ceramics International, 2011, 37(1): 393–398CrossRefGoogle Scholar
  29. [29]
    Avci N, et al. Characterization of TiO2 Powders and Thin Films Prepared by Non–aqueous Sol–gel Techniques[J]. Journal of Sol–Gel Science and Technology, 2009, 52(3): 424–431CrossRefGoogle Scholar
  30. [30]
    Silva RF and Darbello ME Zaniquelli, Aluminium doped Zinc Oxide Films: Formation Process and Optical Properties[J]. Journal of Non–Crystalline Solids, 1999, 247(1): 248–253CrossRefGoogle Scholar
  31. [31]
    Sengupta J, Sahoo RK, and Mukherjee CD. Effect of Annealing on the Structural, Topographical and Optical Properties of Sol–gel Derived ZnO and AZO Thin Films[J]. Materials Letters, 2012, 83:84–87Google Scholar
  32. [32]
    LaiC–m, Lin K–m, and Rosmaidah S. Effect of Annealing Temperature on the Quality of Al–doped ZnO Thin Films Prepared by Sol–gel Method[J]. Jol–Gel Science and Technology, 2012, 61(1): 249–257Google Scholar
  33. [33]
    Hua G, et al. Fabrication of ZnO Nanowire Arrays by Cycle Growth in Surfactantless Aqueous Solution and Their Applications on Dye–sensitized Solar Cells[J]. Materials Letters, 2008, 62(25): 4 109–4 111CrossRefGoogle Scholar
  34. [34]
    Wang H–B, et al. Dynamic Morphology Instability in Epitaxial ZnO/AZO (aluminum–doped ZnO) Core–shell Nanowires[J]. Materials Science, 2014, 49(17): 6 020–6 028CrossRefGoogle Scholar
  35. [35]
    Pal M, et al. Influence of Al Doping on Microstructural, Optical and Photocatalytic Properties of Sol–gel Based Nanostructured Zinc Oxide Films on Glass[J]. RSC Advances, 2014, 4(23): 11 552–11 563CrossRefGoogle Scholar
  36. [36]
    Tian X, et al. Growth and Characterization of the Al–doped and Al–Sn Co–doped ZnO Nanostructures[J]. Ceramics International, 2013, 39(6): 6 497–6 502CrossRefGoogle Scholar
  37. [37]
    Ellmer K and Mientus R. Carrier Transport in Polycrystalline Transparent Conductive Oxides: A Comparative Study of Zinc Oxide and Indium Oxide[J]. Thin Solid Films, 2008, 516(14): 4 620–4 627CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Javad Keshtkar
    • 1
    Email author
  • Jorge Roberto Vargas Garcia
    • 2
  • Jorge Galaviz Perez
    • 3
  • José Martinez Trinidad
    • 1
  1. 1.Escuela Superior de Ingeniería Mecánica y EléctricaInstituto Politécnico Nacional, MéxicoCDMXMéxico
  2. 2.Escuela Superior de Ingeniería Química e Industrias ExtractivasInstituto Politécnico Nacional, MéxicoCDMXMéxico
  3. 3.Universidad Juárez Autónoma de Tabasco, División Académica Multidisciplinaria de Jalpa de Méndez, Ribera Alta, Jalpa de MéndezTabascoMéxico

Personalised recommendations