Minimizing energy and link utilization in ISP backbone networks with multi-path routing: a bi-level approach

  • Ikram BourasEmail author
  • Rosa Figueiredo
  • Michael Poss
  • Fen Zhou
Original Paper


In recent years, green networking has attracted a lot of attention from device manufacturers and Internet Service Providers (ISP) to reduce energy consumption. In the literature, energy-aware traffic engineering problem is proposed to minimize the total energy consumption by switching off unused network devices (routers and links) while guaranteeing full network connectivity. In this work, we are interested in the problem of energy-aware Traffic Engineering while using multi-path routing (ETE-MPR) to minimize link capacity utilization in ISP backbone networks. To this end, we propose a bi-level optimization model where the upper level represents the energy management function, and the lower level refers to the deployed multi-path routing protocol. Then, we reformulate it as a one-level MILP replacing the second level problem by different sets of optimality conditions. We further use these formulations to solve the problem with classical branch-and-bound, cutting plane, and branch-and-cut algorithms. The computational experiments are performed on real instances to compare the proposed algorithms and to evaluate the efficiency of our model against the existing single-path and multi-objective approaches.


Energy-aware engineering Bi-level programming Multi-path Cutting plane Branch-and-cut 



  1. 1.
    Addis, B., Capone, A., Carello, G., Gianoli, L.G., Sansò, B.: Energy management through optimized routing and device powering for greener communication networks. IEEE/ACM Trans. Netw. 22(1), 313–325 (2014)CrossRefGoogle Scholar
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc, Upper Saddle River (1993)zbMATHGoogle Scholar
  3. 3.
    Amaldi, E., Capone, A., Coniglio, S., Gianoli, L.G.: Energy-aware traffic engineering with elastic demands and MMF bandwidth allocation. In: Proc. of IEEE CAMAD’13, pp. 169–174 (2013)Google Scholar
  4. 4.
    Andrae, A.S.G., Edler, T.: On global electricity usage of communication technology: trends to 2030. Challenges 6(1), 117–157 (2015)CrossRefGoogle Scholar
  5. 5.
    Banner, R., Orda, A.: Multipath routing algorithms for congestion minimization. IEEE/ACM Trans. Netw. 15(2), 413–424 (2007)CrossRefGoogle Scholar
  6. 6.
    Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, Hoboken (2011)zbMATHGoogle Scholar
  7. 7.
    Bolla, R., Bruschi, R., Davoli, F., Cucchietti, F.: Energy efficiency in the future internet: a survey of existing approaches and trends in energy-aware fixed network infrastructures. IEEE Commun. Surv. Tuts. 13(2), 223–244 (2011)CrossRefGoogle Scholar
  8. 8.
    Bouras, I., Figueiredo, R., Poss, M., Zhou, F.: On two new formulations for the fixed charge network design problem with shortest path constraints. Comput. Oper. Res. 108, 226–237 (2019)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, X., Jukan, A., Drummond, A.C., da Fonseca, N.L.S.: A multipath routing mechanism in optical networks with extremely high bandwidth requests. In: Proc. of IEEE Globecom’09, pp. 1–6 (2009)Google Scholar
  10. 10.
    Chiaraviglio, L., Mellia, M., Neri, F.: Minimizing ISP network energy cost: formulation and solutions. IEEE/ACM Trans. Netw. 20(2), 463–476 (2012)CrossRefGoogle Scholar
  11. 11.
    Chiesa, M., Kindler, G., Schapira, M.: Traffic engineering with equal-cost-multipath: an algorithmic perspective. IEEE/ACM Trans. Netw. 25(2), 779–792 (2017)CrossRefGoogle Scholar
  12. 12.
    Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., Vasilakos, A.V.: An OSPF-integrated routing strategy for QoS-aware energy saving in IP backbone networks. IEEE Trans. Netw. Service Manag. 9(3), 254–267 (2012)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Dabaghi, F., Movahedi, Z., Langar, R.: A survey on green routing protocols using sleep-scheduling in wired networks. J. Netw. Comput. Appl. 77(C), 106–122 (2017)CrossRefGoogle Scholar
  15. 15.
    Erkut, E., Gzara, F.: Solving the hazmat transport network design problem. Comput. Oper. Res. 35(7), 2234–2247 (2008)CrossRefGoogle Scholar
  16. 16.
    Gupta, M., Singh, S.: Greening of the internet. In: Proc. of ACM SIGCOMM’03, pp. 19–26 (2003)Google Scholar
  17. 17.
    He, J., Song, W.: Achieving near-optimal traffic engineering in hybrid software defined networks. In: Proc. of IFIP Networking’05, pp. 1–9 (2015)Google Scholar
  18. 18.
    Lambert, S., Heddeghem, W.V., Vereecken, W., Lannoo, B., Colle, D., Pickavet, M.: Worldwide electricity consumption of communication networks. Opt. Express 20(26), B513–B524 (2012)CrossRefGoogle Scholar
  19. 19.
    Lee, G.M., Choi, J.S.: A survey of multipath routing for traffic engineering. Information and Communications University pp. 1–27 (2018)Google Scholar
  20. 20.
    Li, M., Lukyanenko, A., Ou, Z., Ylä-Jääki, A., Tarkoma, S., Coudron, M., Secci, S.: Multipath transmission for the internet: a survey. IEEE Commun. Surveys Tuts. 18(4), 2887–2925 (2016)CrossRefGoogle Scholar
  21. 21.
    Liu, X., Mohanraj, S., Pioro, M., Medhi, D.: Multipath routing from a traffic engineering perspective: How beneficial is it? In: Proc. of IEEE ICNP’14, pp. 143–154 (2014)Google Scholar
  22. 22.
    Mauttone, A., Labbé, M., Figueiredo, R.: A tabu search approach to solve a network design problem with user-optimal flows. In: ALIO/EURO Workshop on Applied Combinatorial Optimization (2007)Google Scholar
  23. 23.
    Merindol, P., Pansiot, J.J., Cateloin, S.: Improving load balancing with multipath routing. In: Proc. of IEEE ICCCN’08, pp. 1–8 (2008)Google Scholar
  24. 24.
    Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0–Survivable Network Design Library. In: Proceedings of the 3rd International Network Optimization Conference (INOC 2007), Spa, Belgium (2007). extended version accepted in Networks, 2009 Google Scholar
  25. 25.
    Singh, S.K., Das, T., Jukan, A.: A survey on internet multipath routing and provisioning. IEEE Commun. Surveys Tuts. 17(4), 2157–2175 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Xi, K., Chao, H.J.: Load balancing in ip networks using generalized destination-based multipath routing. IEEE/ACM Trans. Netw. 23(6), 1959–1969 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LIRMMUniversity of MontpellierMontpellier Cedex 5France
  2. 2.CERI-LIAUniversity of AvignonAvignonFrance

Personalised recommendations