Advertisement

An integer programming formulation of the key management problem in wireless sensor networks

  • Guanglin Xu
  • Alexander Semenov
  • Maciej RyszEmail author
Original Paper
  • 13 Downloads

Abstract

With the advent of modern communications systems, much attention has been put on developing methods for securely transferring information between constituents of wireless sensor networks. To this effect, we introduce a mathematical programming formulation for the key management problem, which broadly serves as a mechanism for encrypting communications. In particular, an integer programming model of the q-Composite scheme is proposed and utilized to distribute keys among nodes of a network whose topology is known. Numerical experiments demonstrating the effectiveness of the proposed model are conducted using using a well-known optimization solver package. An illustrative example depicting an optimal encryption for a small-scale network is also presented.

Keywords

Key management Wireless sensor networks q-Composite method Integer linear programming Optimization 

Notes

References

  1. 1.
    Blom, R.: An Optimal Class of Symmetric Key Generation Systems, pp. 335–338. Springer, Berlin (1985).  https://doi.org/10.1007/3-540-39757-4_22 Google Scholar
  2. 2.
    Blundo, C., De Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-Secure Key Distribution for Dynamic Conferences, pp. 471–486. Springer, Berlin (1993).  https://doi.org/10.1007/3-540-48071-4_33 zbMATHGoogle Scholar
  3. 3.
    Campos-Naez, E., Garcia, A., Li, C.: A game-theoretic approach to efficient power management in sensor networks. Oper. Res. 56(3), 552–561 (2008).  https://doi.org/10.1287/opre.1070.0435 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Camtepe, S.A., Yener, B.: Combinatorial design of key distribution mechanisms for wireless sensor networks. IEEE/ACM Trans. Netw. 15(2), 346–358 (2007).  https://doi.org/10.1109/TNET.2007.892879 CrossRefGoogle Scholar
  5. 5.
    Carvalho, M., Sorokin, A., Boginski, V., Balasundaram, B.: Topology design for on-demand dual-path routing in wireless networks. Optim. Lett. 7(4), 695–707 (2013).  https://doi.org/10.1007/s11590-012-0453-0 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, C.Y., Chao, H.C.: A survey of key distribution in wireless sensor networks. Secur. Commun. Netw. 7(12), 2495–2508 (2014).  https://doi.org/10.1002/sec.354 CrossRefGoogle Scholar
  7. 7.
    Didla, S., Ault, A., Bagchi, S.: Optimizing AES for embedded devices and wireless sensor networks. In: Proceedings of the 4th International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, TridentCom’08, pp. 4:1–4:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium (2008)Google Scholar
  8. 8.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS’02, pp. 41–47. ACM, New York (2002).  https://doi.org/10.1145/586110.586117
  9. 9.
    He, T., Vicaire, P., Yan, T., Cao, Q., Zhou, G., Gu, L., Luo, L., Stoleru, R., Stankovi, J.A., Abdelzaher, T.: Achieving real-time target tracking using wireless sensor networks. In: Technical Report (2006)Google Scholar
  10. 10.
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Health monitoring of civil infrastructures using wireless sensor networks. pp. 254–263 (2007).  https://doi.org/10.1145/1236360.1236395
  11. 11.
    Li, X., Aneja, Y.P.: A branch-and-cut approach for the minimum-energy broadcasting problem in wireless networks. INFORMS J. Comput. 24(3), 443–456 (2012).  https://doi.org/10.1287/ijoc.1110.0463 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, D., Ning, P.: Establishing pairwise keys in distributed sensor networks. In: Proceedings of the 10th ACM Conference on Computer and Communications Security, CCS’03, pp. 52–61. ACM, New York (2003).  https://doi.org/10.1145/948109.948119
  13. 13.
    Rossi, A., Singh, A., Sevaux, M.: Column generation algorithm for sensor coverage scheduling under bandwidth constraints. Networks 60(3), 141–154 (2012).  https://doi.org/10.1002/net.20466 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Rossi, A., Singh, A., Sevaux, M.: An exact approach for maximizing the lifetime of sensor networks with adjustable sensing ranges. Comput. Oper. Res. 39(12), 3166–3176 (2012).  https://doi.org/10.1016/j.cor.2012.04.001 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Rossi, A., Singh, A., Sevaux, M.: Lifetime maximization in wireless directional sensor network. Eur. J. Oper. Res. 231(1), 229–241 (2013).  https://doi.org/10.1016/j.ejor.2013.05.033 CrossRefGoogle Scholar
  16. 16.
    Ruj, S., Nayak, A., Stojmenovic, I.: Pairwise and triple key distribution in wireless sensor networks with applications. IEEE Trans. Comput. 62(11), 2224–2237 (2013).  https://doi.org/10.1109/TC.2012.138 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shin, I., Shen, Y., Thai, M.T.: On approximation of dominating tree in wireless sensor networks. Optim. Lett. 4(3), 393–403 (2010).  https://doi.org/10.1007/s11590-010-0175-0 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Simplício Jr., M.A., Barreto, P.S.L.M., Margi, C.B., Carvalho, T.C.M.B.: A survey on key management mechanisms for distributed wireless sensor networks. Comput. Netw. 54(15), 2591–2612 (2010).  https://doi.org/10.1016/j.comnet.2010.04.010 CrossRefzbMATHGoogle Scholar
  19. 19.
    Waltenegus, D., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice—Waltenegus Dargie, Christian Poellabauer. Wiley, Hoboken (2010)Google Scholar
  20. 20.
    Werner-Allen, G., Lorincz, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., Welsh, M.: Deploying a wireless sensor network on an active volcano. IEEE Internet Comput. 10(2), 18–25 (2006).  https://doi.org/10.1109/MIC.2006.26 CrossRefGoogle Scholar
  21. 21.
    Wu, W., Gao, X., Pardalos, P.M., Du, D.Z.: Wireless networking, dominating and packing. Optim. Lett. 4(3), 347–358 (2010).  https://doi.org/10.1007/s11590-009-0151-8 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Systems Engineering and Engineering ManagementUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.Faculty of Information TechnologyUniversity of JyväskyläJyväskyläFinland
  3. 3.Department of Information Systems and AnalyticsMiami UniversityOxfordUSA

Personalised recommendations