Euler’s elastica-based algorithm for Parallel MRI reconstruction using SENSitivity Encoding

  • Maryam YashtiniEmail author
Original Paper


SENSitivity Encoding (SENSE) is an effective mathematical formulation for reconstructing under-sampled MRI data obtained in Parallel Magnetic Resonance Imaging (Parallel MRI). The functional model includes a regularization term and a data fidelity term which need to be minimized to obtain a high quality MRI result. The proper choice of regularization is essential for image quality. In this paper, we show that Euler’s elastica is an effective regularization for Parallel MRI data reconstruction, and has advantages over the Total Variation (TV) regularization in improving image signal to noise ratio and image relative error. The Euler’s elastica functional is however complex to minimize as it is non-convex, non-smooth, and highly nonlinear. In this paper, we propose a new numerical method to solve Euler’s elastica regularized SENSE efficiently. This algorithm is based on a variable splitting approach and proper relaxation of the functional. Numerical examples are presented to show the effectiveness of the proposed Euler’s elastica algorithm in comparison to Bregman Operator Splitting with Variable Stepsize, a TV based algorithm.


Numerical optimization Euler’s elastica regularization Non-smooth and non-convex problem Parallel MRI reconstruction 



  1. 1.
    Block, K., Uecker, M., Frahm, J.: Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 57, 1086–1098 (2007)Google Scholar
  2. 2.
    Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10, 1200–1211 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010)zbMATHGoogle Scholar
  4. 4.
    Chan, T., Kang, S.H., Shen, J.: Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math. 63(2), 564–592 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, Y., Hager, W.W., Yashtini, M., Ye, X., Zhang, H.: Bregman operator splitting with variable stepsize for total variation image reconstruction. Comput. Optim. Appl. 54, 317–342 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Duan, Y., Wang, Y., Hahn, J.: A fast augmented Lagrangian method for Euler’s elastica models. Numer. Math. Theor. Methods Appl. 6(1), 47–71 (2013)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Cambridge (1984)zbMATHGoogle Scholar
  8. 8.
    Glowinski, R., Pan, T.W., Tai, X.C.: Some facts about operator-splitting and alternating direction methods. UCLA CAM Reports (16-10) (2016)Google Scholar
  9. 9.
    Goldstein, T., Osher, S.: The split Bregman method for L1 regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47, 1202–1210 (2002)Google Scholar
  11. 11.
    Hager, W.W., Yashtini, M., Zhang, H.: An O(1/K) convergence rate for the BOSVS algorithm in total variation regularized least squares. SIAM J. Numer. Anal. 54(3), 1535–1556 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Huang, F., Chen, Y., Ye, X.: Fast iterative SENSE with arbitrary k-space trajectories. In: Proc. Intl. Workshop Parallel MRI (2009)Google Scholar
  13. 13.
    Huang, F., Chen, Y., Ye, X., Lin, W., Reykowski, A.: A rapid and robust approach for sparsity constrained SENSE. In: Proc. Intl. Workshop Parallel MRI (2009)Google Scholar
  14. 14.
    Kang, S.H., Zhu, W., Shen, J.: Illusory shapes via corner fusion. SIAM J. Imaging Sci. 7(4), 1907–1936 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)Google Scholar
  16. 16.
    Lustig, M., Pauly, J.: Spirit: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64, 457–471 (2010)Google Scholar
  17. 17.
    Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Proc. Conf. on Comp. Vis. Patt. Recog., pp. 1–8 (2008)Google Scholar
  18. 18.
    McGraw, T., Vemuri, B., Ozarslan, E., Chen, Y., Mareci, T.: Variational denoising of diffusion weighted MRI. Inverse Probl. Imaging 3(4), 625–648 (2009)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Murphy, M., Alley, M., Demmel, J., utzer, K.K., Vasanawala, S., Lustig, M.: Fast \(\ell _1\)-spirit compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imaging 31(6), 1250–1262 (2012)Google Scholar
  20. 20.
    Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ouyang, Y., Chen, Y., Wu, Y.: Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Probl. Imaging 7, 565–583 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Ouyang, Y., Chen, Y., Wu, Y.: Vectorial total variation regularization of orientation distribution functions in diffusion weighted MRI. Int. J. Bioinform. Res. Appl. 10(1), 110–127 (2014)Google Scholar
  23. 23.
    Papafitsoros, K., Schöenlieb, C., Sengul, B.: Combined first and second order total variation inpainting using split Bregman. Image Process. On Line 3, 112–136 (2013)Google Scholar
  24. 24.
    Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952–962 (1999)Google Scholar
  25. 25.
    Ra, J.B., Rim, C.: Fast imaging using subencoding data sets from multiple detectors. Magn. Reson. Med. 30, 142–145 (1993)Google Scholar
  26. 26.
    Rockafellar, R.T.: Convex Analysis. Princeton Univ. Press, Princeton (1970)zbMATHGoogle Scholar
  27. 27.
    Rudin, L., Osher, S., Fatemi, E.: Non-linear total variation noise removal algorithm. Physics D 60, 259–268 (1992)zbMATHGoogle Scholar
  28. 28.
    Schoenemann, T., Masnou, S., Cremers, D.: The elastica ratio: introducing curvature into ratio-based image segmentation. IEEE Trans. Image Process. 20, 565–2581 (2011)zbMATHGoogle Scholar
  29. 29.
    Tai, X.C., Hahn, J., Chung, G.: A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Uecker, M., Lai, P., Murphy, M.J., Virtue, P., Elad, M., Pauly, J.M., Vasanawala, S.S., Lustig, M.: ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71, 990–1001 (2014)Google Scholar
  31. 31.
    Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wu, C., Zhang, J., Tai, X.C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5, 237–261 (2011)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4, 288–297 (2010)Google Scholar
  35. 35.
    Yashtini, M., Hager, W.W., Chen, Y., Ye, X.: Partially parallel MR image reconstruction using sensitivity encoding. In: 2012 IEEE International Conference on Image Processing, pp. 2077–2080. IEEE, Orlando (2012)Google Scholar
  36. 36.
    Yashtini, M., Kang, S.: A fast relaxed normal two split method and an effective weighted TV approach for Euler’s elastica image inpainting. SIAM J. Imaging Sci. 9(4), 1552–1581 (2016)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Yashtini, M., Kang, S.H.: Alternating direction method of multiplier for Euler’s elastica-based denoising. In: SSVM 2015, LNCS, vol. 9087, pp. 690–701 (2015)Google Scholar
  38. 38.
    Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Probl. Imaging 7, 1409–1432 (2013)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhu, W., Tai, X.C., Chan, T.: Image segmentation using Euler’s elastica as the regularization. J. Sci. Comput. 57, 414–438 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsGeorgetown UniversityWashingtonUSA

Personalised recommendations