Advertisement

New optimality conditions for bilevel programs by using an exact separation principle

  • N. GadhiEmail author
  • S. Dempe
  • M. El Idrissi
Original Paper
  • 20 Downloads

Abstract

In this paper, we are concerned with a bilevel optimization problem \(\left( P\right) \). Reducing it into a one-level nonlinear and nonsmooth program using an exact separation theorem we give necessary optimality conditions in terms of Fréchet subdifferentials and Fréchet normal cones.

Keywords

Bilevel optimzation Compact set Fréchet subdifferential Fréchet normal cone Optimality conditions 

Notes

Acknowledgements

This work has been supported by the Alexander-von-Humboldt foundation.

References

  1. 1.
    Babahadda, H., Gadhi, N.: Necessary optimality conditions for bilevel optimization problems using convexificators. J. Glob. Optim. 34, 535–549 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bard, J.F.: Some properities of the bilevel programming problem. J. Optim. Theory Appl. 68, 371–378 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dempe, S.: A necessary and a sufficient optimality condition for bilevel programming problem. Optimization 25, 341–354 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dempe, S., Gadhi, N.: Necessary optimality conditions for bilevel set optimization problems. J. Glob. Optim. 39, 529–542 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dempe, S., Gadhi, N.: A new equivalent single-level problem for bilevel problems. Optimization 63(5), 789–798 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kruger, A.: Ya, On Fréchet subdifferentials. J. Math. Sci. 116(3), 3325–3358 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 330. Springer, Berlin (2006)CrossRefGoogle Scholar
  9. 9.
    Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Am. Math. Soc. 348, 1235–1280 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Outrata, J.V.: On necessary optimality conditions for Stackelberg problems. J. Optim. Theory Appl. 76, 306–320 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, R.: Problems of hierarchical optimization in finite dimensions. SIAM J. Optim. 4, 521–536 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zheng, X.Y., Yang, Z., Zou, J.: Exact separation theorem for closed sets in Asplund spaces. Optimization 66(7), 1065–1077 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dhar El Mehrez, Department of MathematicsLSO, Sidi Mohamed Ben Abdellah UniversityFesMorocco
  2. 2.Department of Mathematics and Computers SciencesTechnical University Bergakademie FreibergFreibergGermany

Personalised recommendations