Advertisement

A non-triangular hub location problem

  • Jack Brimberg
  • Nenad Mladenović
  • Raca TodosijevićEmail author
  • Dragan Urošević
Original paper
  • 15 Downloads

Abstract

Hub location problems generally assume that the triangle inequality applies on the edges of a complete graph. Hence the flow between any pair of nodes requires at most two hubs for the transfer process. Here we relax the triangle inequality restriction and present two new formulations of the uncapacitated multiple allocation p-hub median problem that allow transfer through more than two hubs. Some testing is performed on newly generated instances where the triangle inequality does not hold in order to assess the tractability of these new mathematical models, and their usefulness compared to the standard approach.

Keywords

Hub location Multiple allocation p-Hub median Triangle inequality 

Notes

Acknowledgements

This research is partially supported by Serbian Ministry of Education, Science and Technological Development under the grants nos. 174010 and 044006. In addition, this research is partially covered by the framework of the Grant Number BR05236839 “Development of information technologies and systems for stimulation of personality’s sustainable development as one of the bases of development of digital Kazakhstan”.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs (1993)zbMATHGoogle Scholar
  2. 2.
    Alumur, S., Kara, B.Y.: Network hub location problems: the state of the art. Eur. J. Oper. Res. 190(1), 1–21 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alumur, S.A., Kara, B.Y., Karasan, O.E.: The design of single allocation incomplete hub networks. Transp. Res. Part B: Methodol. 43(10), 936–951 (2009)Google Scholar
  4. 4.
    Boland, N., Krishnamoorthy, M., Ernst, A.T., Ebery, J.: Preprocessing and cutting for multiple allocation hub location problems. Eur. J. Oper. Res. 155(3), 638–653 (2004)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D.: A basic variable neighborhood search heuristic for the uncapacitated multiple allocation p-hub center problem. Optim. Lett. (2015).  https://doi.org/10.1007/s11590-015-0973-5
  6. 6.
    Brimberg, J., Mladenović, N., Todosijević, R., Urošević, D.: General variable neighborhood search for the uncapacitated single allocation p-hub center problem. Optim. Lett. 11, 377–388 (2015).  https://doi.org/10.1007/s11590-016-1004-x MathSciNetzbMATHGoogle Scholar
  7. 7.
    Campbell, J.F.: Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72(2), 387–405 (1994)zbMATHGoogle Scholar
  8. 8.
    Cánovas, L., García, S., Marín, A.: Solving the uncapacitated multiple allocation hub location problem by means of a dual-ascent technique. Eur. J. Oper. Res. 179(3), 990–1007 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Contreras, I., Fernández, E., Marín, A.: The tree of hubs location problem. Eur. J. Oper. Res. 202(2), 390–400 (2010)zbMATHGoogle Scholar
  10. 10.
    de Camargo, R.S., Miranda Jr., G., Luna, H.P.: Benders decomposition for the uncapacitated multiple allocation hub location problem. Comput. Oper. Res. 35(4), 1047–1064 (2008)zbMATHGoogle Scholar
  11. 11.
    Ernst, A.T., Hamacher, H., Jiang, H., Krishnamoorthy, M., Woeginger, G.: Uncapacitated single and multiple allocation p-hub center problems. Comput. Oper. Res. 36(7), 2230–2241 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ernst, A.T., Jiang, H., Krishnamoorthy, M., Baatar, H.: Reformulations and computational results for uncapacitated single and multiple allocation hub covering problems. Work. Pap. Ser. 1, 1–18 (2011)Google Scholar
  13. 13.
    Ernst, A.T., Krishnamoorthy, M.: Efficient algorithms for the uncapacitated single allocation p-hub median problem. Locat. Sci. 4(3), 139–154 (1996)zbMATHGoogle Scholar
  14. 14.
    Ernst, A.T., Krishnamoorthy, M.: Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. Eur. J. Oper. Res. 104(1), 100–112 (1998)zbMATHGoogle Scholar
  15. 15.
    Farahani, R.Z., Hekmatfar, M., Arabani, A.B., Nikbakhsh, E.: Hub location problems: a review of models, classification, solution techniques, and applications. Comput. Ind. Eng. 64(4), 1096–1109 (2013)Google Scholar
  16. 16.
    García, S., Landete, M., Marín, A.: New formulation and a branch-and-cut algorithm for the multiple allocation p-hub median problem. Eur. J. Oper. Res. 220(1), 48–57 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gavriliouk, E.O.: Aggregation in hub location problems. Comput. Oper. Res. 36(12), 3136–3142 (2009)zbMATHGoogle Scholar
  18. 18.
    Gelareh, S., Nickel, S.: Hub location problems in transportation networks. Transp. Res. Part E: Logist. Transp. Rev. 47(6), 1092–1111 (2011)Google Scholar
  19. 19.
    Hamacher, H.W., Labbé, M., Nickel, S., Sonneborn, T.: Adapting polyhedral properties from facility to hub location problems. Discrete Appl. Math. 145(1), 104–116 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hwang, Y.H., Lee, Y.H.: Uncapacitated single allocation p-hub maximal covering problem. Comput. Ind. Eng. 63(2), 382–389 (2012)Google Scholar
  21. 21.
    Ilić, A., Urošević, D., Brimberg, J., Mladenović, N.: A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem. Eur. J. Oper. Res. 206(2), 289–300 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Marın, A., Cánovas, L., Landete, M.: New formulations for the uncapacitated multiple allocation hub location problem. Eur. J. Oper. Res. 172(1), 274–292 (2006)zbMATHGoogle Scholar
  23. 23.
    Martí, R., Corberán, Á., Peiró, J.: Scatter search for an uncapacitated p-hub median problem. Comput. Oper. Res. 58, 53–66 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Meyer, T., Ernst, A.T., Krishnamoorthy, M.: A 2-phase algorithm for solving the single allocation p-hub center problem. Comput. Oper. Res. 36(12), 3143–3151 (2009)zbMATHGoogle Scholar
  25. 25.
    Peiró, J., Corberán, A., Martí, R.: Grasp for the uncapacitated r-allocation p-hub median problem. Comput. Oper. Res. 43(1), 50–60 (2014)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Peker, M., Kara, B.Y.: The p-hub maximal covering problem and extensions for gradual decay functions. Omega 54, 158–172 (2015)Google Scholar
  27. 27.
    Skorin-Kapov, D., Skorin-Kapov, J., O’Kelly, M.: Tight linear programming relaxations of uncapacitated p-hub median problems. Eur. J. Oper. Res. 94(3), 582–593 (1996)zbMATHGoogle Scholar
  28. 28.
    Todosijević, R., Urošević, D., Mladenović, N., Hanafi, S.: A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optim. Lett. (2015).  https://doi.org/10.1007/s11590-015-0867-6
  29. 29.
    Weng, K., Yang, C., Ma, Y.: Two artificial intelligence heuristics in solving multiple allocation hub maximal covering problem. In: Intelligent computing, pp. 737–744 (2006)Google Scholar
  30. 30.
    Yaman, H.: Allocation strategies in hub networks. Eur. J. Oper. Res. 211(3), 442–451 (2011)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Yoon, M.-G., Current, J.: The hub location and network design problem with fixed and variable arc costs: formulation and dual-based solution heuristic. J. Oper. Res. Soc. 59(1), 80–89 (2008)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Royal Military College of CanadaKingstonCanada
  2. 2.Emirates College of TechnologiesAbu DhabiUAE
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.LAMIH UMR CNRS 8201Université Polytechnique Hauts-de-FranceValenciennes Cedex 9France
  5. 5.Mathematical Institute SANUBelgradeSerbia

Personalised recommendations