Advertisement

Primal-dual method for solving a linear-quadratic multi-input optimal control problem

  • Noureddine Khimoum
  • Mohand Ouamer Bibi
Original Paper
  • 23 Downloads

Abstract

In this paper, we intend to minimize a quadratic terminal functional on the trajectories of a linear dynamic system. The algorithm of optimization is constructed on the basis of support methods of linear and quadratic programming and their applications in the constructive theory of optimal control. Here we develop a constructive primal-dual method for the case where the control is a multivariable function. The algorithm is illustrated on two numerical examples in mechanics.

Keywords

Optimal control Support maximum principle Support auxiliary problem Dual method Finishing procedure 

Notes

References

  1. 1.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont (1995)zbMATHGoogle Scholar
  2. 2.
    Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM (2001)Google Scholar
  3. 3.
    Bibi, M.O.: Optimization of a linear dynamic system with double terminal constraints on the trajectories. Optimization 30(4), 359–366 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bibi, M.O.: Support method for solving a linear-quadratic problem with polyhedral constraints on control. Optimization 37(2), 139–147 (1996)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bibi, M.O., Bentobache, M.: A hybrid direction algorithm for solving linear programs. Int. J. Comput. Math. 92(1), 201–216 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bounceur, A., Djemai, S., Brahmi, B., Bibi, M.O., Euler, R.: A classification approach for an accurate analog/RF BIST evaluation based on the process parameters. J. Electron. Test. 34(3), 321–335 (2018)CrossRefGoogle Scholar
  7. 7.
    Brahmi, B., Bibi, M.O.: Dual support method for solving convex quadratic programs. Optimization 59(6), 851–872 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bulatov, A.V., Krotov, V.F.: On numeric solution of linear-quadratic optimal control problem by dual method. Autom. Remote Control 70(7), 1089–1099 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Burachik, R.S., Kaya, C.Y., Majeed, S.N.: A duality approach for solving control-constrained linear-quadratic optimal control problems. SIAM J. Control Optim. 52(3), 1423–1456 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chan, N.: Constructive method for solving a linear minimax problem of optimal control. J. Optim. Theory Appl. 71(2), 255–275 (1991)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chernushevich, A.S.: Method of support problems for solving a linear-quadratic problem of terminal control. Int. J. Control 52(6), 1475–1488 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Djemai, S., Brahmi, B., Bibi, M.O.: A primal-dual method for SVM training. Neurocomputing 211, 34–40 (2016)CrossRefGoogle Scholar
  13. 13.
    Gabasov, R., Kirillova, F.M.: Constructive Methods of Optimization, Part 2: Control Problems. University Press, Minsk (1984)zbMATHGoogle Scholar
  14. 14.
    Gabasov, R., Kirillova, F.M., Tyatyushkin, A.I.: Constructive Methods of Optimization, Part I: Linear Problems. University Press, Minsk (1984). (In Russian) zbMATHGoogle Scholar
  15. 15.
    Gabasov, R., Kirillova, F.M., Kostyukova, O.I.: Direct accurate method to optimize a linear dynamic multi-input system. Avtom. Telemech. 6, 6–13 (1986)Google Scholar
  16. 16.
    Gabasov, R., Kirillova, F.M., Kostyukova, I.O., Raketsky, V.M.: Constructive Methods of Optimization, Part 4: Convex Problems. University Press, Minsk (1987)Google Scholar
  17. 17.
    Gabasov, R., Kirillova, F.M., Pavlenok, N.S.: Constructing open-loop and closed-loop solutions of linear-quadratic optimal control problems. Comput. Math. Math. Phys. 48(10), 1715–1745 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gabasov, R., Kirillova, F.M., Prischepova, S.V.: Optimal Feedback Control. Springer, London (1995)zbMATHGoogle Scholar
  19. 19.
    Gnevko, S.V.: Numerical method for solving the linear time optimal control problem. Int. J. Control 44(1), 251–258 (1986)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gnevko, S.V.: Optimization methods of dynamic system with several entries. Izv. AN BSSR Seria Fiz-Mat. Nauk. 5, 26–32 (1985)MathSciNetGoogle Scholar
  21. 21.
    Gong, Z.H., Liu C.Y., Sun, J., Teo, K.L.: Distributionally robust \(L_{1}\)-estimation in multiple linear regression. Optim. Lett. (2018).  https://doi.org/10.1007/s11590-018-1299-x
  22. 22.
    Gong, Z.H., Liu, C.Y., Teo, K.L.: Optimal control of switched systems with multiple time-delays and a cost on changing control. J. Ind. Manag. Optim. 14(1), 183–198 (2018)MathSciNetGoogle Scholar
  23. 23.
    Gornov, A.Y., Tyatyushkin, A.I., Finkelstein, E.A.: Numerical methods for solving terminal optimal control problems. Comput. Math. Math. Phys. 56(2), 221–234 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kostina, E.: The long step rule in the bounded-variable dual simplex method: numerical experiments. Math. Methods Oper. Res. 55, 413–429 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kostina, E., Kostyukova, O.I.: An algorithm for solving quadratic programming problems with linear equality and inequality constraints. Comput. Math. Math. Phys. 41(7), 960–973 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kostyukova, O.I.: Optimization of a linear dynamic multi-input system. IZV. AN BSSR Seria Fiz-Mat. Nauk. 5, 16–21 (1990)zbMATHGoogle Scholar
  27. 27.
    Kostyukova, O., Kostina, E.: Analysis of properties of the solutions to parametric time-optimal problems. Comput. Optim. Appl. 26, 285–326 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Liu, C.Y., Gong, Z.H., Teo, K.L.: Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data. Appl. Math. Model. 53, 353–368 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liu, C.Y., Gong, Z.H., Teo, K.L., Loxton, R., Feng, E.M.: Bi-objective dynamic optimization of a nonlinear time-delay system in microbial batch process. Optim. Lett. 12, 1249–1264 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Liu, C.Y., Loxton, R., Teo, K.L.: A computational method for solving time-delay optimal control problems with free terminal time. Syst. Control Lett. 72, 53–60 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Moissiev, N.N.: Numerical Methods in Optimal Systems Theory. Nauka, Moskow (1971)Google Scholar
  32. 32.
    Pontryagin, L.S., Boltyansky, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962)Google Scholar
  33. 33.
    Radjef, S., Bibi, M.O.: An effective generalization of the direct support method in quadratic convex programming. Appl. Math. Sci. 6(31), 1525–1540 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Radwan, A., Vasilieva, O., Enkhbat, R., Griewank, A., Guddat, J.: Parametric approach to optimal control. Optim. Lett. 6, 1303–1316 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sun, X., Liu, G., Rees, D., Wang, W.: Delay-dependent stability for discrete systems with large delay sequence based on switching techniques. Automatica 44(11), 2902–2908 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tabak, D., Kuo, B.C.: Optimal Control by Mathematical Programming. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  37. 37.
    Teo, K.L., Goh, C.J., Wong, K.H.: A unified computational approach to optimal control problems. Longman Scientific & Technical, Essex (1991)zbMATHGoogle Scholar
  38. 38.
    Tyatyushkin, A.I.: A multimethod technique for solving optimal control problem. Optim. Lett. 6, 1335–1347 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Yuan, J., Zhang, Y., Jianxiong, Y., Jun, X., Teo, K.L., Zhu, X., Feng, E.M., Yin, H., Xiu, Z.: Robust parameter identification using parallel global optimization for a batch nonlinear enzyme-catalytic time-delayed process presenting metabolic discontinuities. Appl. Math. Model. 46, 554–571 (2017)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yuan, J., Liu, C.Y., Zhang, X., Xie, J., Feng, E.M., Yin, H., Xiu, Z.: Optimal control of a batch fermentation process with nonlinear time-delay and free terminal time and cost sensitivity constraint. J. Process Control 44, 41–52 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LaMOS Research Unit, Operational Research DepartmentUniversity of BejaiaBejaïaAlgeria

Personalised recommendations