Derivative free methodologies for circuit worst case analysis

  • Vittorio LatorreEmail author
  • Husni Habal
  • Helmut Graeb
  • Stefano Lucidi
Original Paper


In this paper, a new derivative-free method for Worst Case Analysis (WCA) of circuit design is defined. A WCA of a device can be performed by solving a particular minimization problem where the objective function values are obtained by a simulation code and where some variables are subject to a spherical constraint and others to box constraints. In order to efficiently tackle such a problem, the paper defines a new DF algorithm which follows a two blocks Gauss Seidel approach, namely it alternates an approximated minimization with respect to the variables subject to the spherical constraint with an approximated minimization respect to the variables subject to the box constraints. The algorithm is described and its global convergence properties are analyzed. Furthermore it is tested in the WCA of a MOSFET operational amplifier and its computational behaviour is compared with the one of the efficient optimization tool of the WiCkeD suite for circuit analysis. The obtained results seem to indicate that the proposed algorithm is promising in terms of average efficiency, accuracy and robustness.


Derivative free optimization Bilevel optimization Circuit design Yield optimization 


  1. 1.
    Abramson, M.A., Audet, C., Dennis Jr., J.E., Digabel, S.: Orthomads: a deterministic mads instance with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Allen, P.E., Holberg, D.R.: CMOS Analog Circuit Design. Oxford University Press, Oxford (2010)Google Scholar
  3. 3.
    Antreich, K., Eckmueller, J., Graeb, H., Pronath, M., Schenkel, F., Schwencker, R., Zizala, S.: WiCkeD: analog circuit synthesis incorporating mismatch. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 511–514 (May 2000)Google Scholar
  4. 4.
    Audet, C., Dennis Jr., J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim. 20(1), 445–472 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  6. 6.
    Bertsekas, B.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)zbMATHGoogle Scholar
  7. 7.
    Cadence Design Systems GmbH: Virtuoso spectre circuit simulator and accelerated parallel simulator user guide. In: Product Version 13.1.1, (April 2014).
  8. 8.
    Ciccazzo, A., Di Pillo, G., Latorre, V., et al.: A SVM Surrogate Model Based Method for Yield Optimization in Electronic Circuit Design. Technical Report, Department of Computer, Control and Management Engineering, Universita’degli Studi di Roma“ La Sapienza” (2015)Google Scholar
  9. 9.
    Ciccazzo, A., Latorre, V., Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free robust optimization for circuit design. J. Optim. Theory Appl. 164(3), 842–861 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization, vol. 8. SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  11. 11.
    Eshbaugh, K.S.: Generation of correlated parameters for statistical circuit simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(10), 1198–1206 (1992)CrossRefGoogle Scholar
  12. 12.
    Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nonsmooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gao, W., Hornsey, R.: A power optimization method for CMOS Op-Amps using sub-space based geometric programming. In: Proceedings of the IEEE Conference on Design, Automation and Test in Europe, pp. 508–513 (March 2010)Google Scholar
  14. 14.
    Gielen, G.G.E., Walscharts, H.C.C., Sansen, W.M.C.: Analog circuit design optimization based on symbolic simulation and simulated annealing. IEEE J. Solid State Circuits 25(3), 707–713 (1990)CrossRefGoogle Scholar
  15. 15.
    Graeb, H.: Analog Design Centering and Sizing, Chapter 5, pp. 90–99. Springer, Berlin (2007)Google Scholar
  16. 16.
    Kesidis, G.: Analog optimization with Wong’s stochastic neural network. IEEE Trans. Neural Netw. 6(1), 258–260 (1995)CrossRefGoogle Scholar
  17. 17.
    Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kundert, K., Chang, H., Jefferies, D., Lamant, G., Malavasi, E., Sendig, F.: Design of mixed-signal systems-on-a-chip. IEEE Trans. Comput. Aided Des. Integr. Circuits 19(12), 1561–1571 (2000)CrossRefGoogle Scholar
  19. 19.
    Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21(2), 119–142 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Lucidi, S., Sciandrone, M.: On the global convergence of derivative-free methods for unconstrained optimization. SIAM J. Optim. 13(1), 97–116 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lucidi, Stefano, Sciandrone, Marco, Tseng, Paul: Objective-derivative-free methods for constrained optimization. Math. Program. 92(1), 37–59 (2002)MathSciNetCrossRefGoogle Scholar
  22. 22.
    MunEDA GmbH: Manual for WiCkeD 6.7 (2014).
  23. 23.
    Morshed, T.H., et al.: BSIM4v4. 7 MOSFET model. Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA, Technical Report (2011)Google Scholar
  24. 24.
    Nye, W., Riley, D., Sangiovanni-Vincentelli, A., Tits, A.: DELIGHT.SPICE: an optimization-based system for the design of integrated circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits 7, 501–519 (1988)CrossRefGoogle Scholar
  25. 25.
    Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Advances in Optimization and Numerical Analysis, pp. 51–67. Springer (1994)Google Scholar
  26. 26.
    Somani, A., Chakrabarti, P.P., Patra, A.: An evolutionary algorithm-based approach to automated design of analog and RF circuits using adaptive normalized cost functions. IEEE Trans. Evol. Comput. 11(3), 336–353 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vittorio Latorre
    • 1
    Email author
  • Husni Habal
    • 2
  • Helmut Graeb
    • 3
  • Stefano Lucidi
    • 4
  1. 1.Faculty of Science and TechnologyFederation University AustraliaMt HelenAustralia
  2. 2.Infineon Technologies AGNeubibergGermany
  3. 3.Institute for Electronic Design Automation, Department of Electrical Engineering and Information TechnologyTechnische Universität MünchenMünchenGermany
  4. 4.Department of Computer, Control and Management EngineeringUniversity of Rome SapienzaRomeItaly

Personalised recommendations