Stability of the equilibria of a dynamic system modeling stem cell transplantation

  • Lorand Gabriel ParajdiEmail author


This paper provides a complete analysis of the stability of the steady-states for a three-dimensional system modeling cell dynamics after bone marrow transplantation in chronic myeloid leukemia. There are given results for both chronic and accelerated-acute phases of the disease.


Stability Dynamical system Numerical simulations Mathematical modeling 

Mathematics Subject Classification

37C75 37N25 34D23 



The author would like to thank Professor Damian Trif and Professor Radu Precup for their assistance in preparing this work.


  1. 1.
    Cucuianu, A., Precup, R.: A hypothetical–mathematical model of acute myeloid leukemia pathogenesis. Comput. Math. Methods Med. 11, 49–65 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    De Conde, R., Kim, P.S., Levy, D., Lee, P.P.: Post-transplantation dynamics of the immune response to chronic myelogenous leukemia. J. Theor. Biol. 236, 39–59 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dingli, D., Michor, F.: Successful therapy must eradicate cancer stem cells. Stem Cells 24, 2603–2610 (2006)CrossRefGoogle Scholar
  4. 4.
    England, J.P., Krauskopf, B., Osinga, H.M.: Computing two-dimensional global invariant manifolds in slow-fast systems. Int. J. Bifurc. Chaos 17(3), 805–822 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Francomano, E., Hilker, F.M., Paliaga, M., Venturino, E.: An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Res. Notes Approx. 10, 25–30 (2017)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gradshteym, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 6th edn. Academic Press, San Diego (2000)Google Scholar
  7. 7.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)CrossRefGoogle Scholar
  8. 8.
    Heck, A.: Introduction to Maple, 3rd edn. Springer, New York (2003)CrossRefGoogle Scholar
  9. 9.
    Ilyin, V.A., Poznyak, E.G.: Analytic Geometry. Mir Publishers, Moscow (1984)Google Scholar
  10. 10.
    Kim, P.S., Lee, P.P., Levy, D.: Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective, Biology and Control Theory: Current Challenges. Lecture Notes in Control and Information Sciences, vol. 357. Springer, Berlin (2007)Google Scholar
  11. 11.
    Krauskopf, B., Osinga, H.: Two-dimensional global manifolds of vector fields. Chaos 9(3), 768–774 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Marciniak-Czochra, A., Stiehl, T.: Mathematical models of hematopoietic reconstitution after stem cell transplantation. In: Bock, H., Carraro, T., Jaeger, W., Koerkel, S. (eds.) Model Based Parameter Estimation: Theory and Applications, pp. 191–206. Springer, Heidelberg (2011)Google Scholar
  13. 13.
    Mehta, J., Powles, R., Treleaven, J., Kulkarni, S., Horton, C., Singhal, S.: Number of nucleated cells infused during allogeneic and autologous bone marrow transplantation: an important modifiable factor influencing outcome. Blood 90(9), 3808–10 (1997)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    Parajdi, L.G., Precup, R.: Analysis of a planar differential system arising from hematology. Stud. Univ. Babeş-Bolyai Math. 63, 235–244 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Parajdi, L.G., Precup, R., Bonci, E.-A., Tomuleasa, C.: A mathematical model of the transition from the normal hematopoiesis to the chronic and acceleration-acute stages in myeloid leukemia, submittedGoogle Scholar
  17. 17.
    Precup, R.: Mathematical understanding of the autologous stem cell transplantation. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 10, 155–167 (2012)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Precup, R., Arghirescu, S., Cucuianu, A., Serban, M.: Mathematical modeling of cell dynamics after allogeneic bone marrow transplantation. Int. J. Biomath. 5(2), 1–18 Article 1250026 (2012)Google Scholar
  19. 19.
    Precup, R., Şerban, M.A., Trif, D., Cucuianu, A.: A planning algorithm for correction therapies after allogeneic stem cell transplantation. J. Math. Modell. Algorithm 11, 309–323 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Precup, R., Şerban, M.A., Trif, D.: Asymptotic stability for a model of cellular dynamics after allogeneic bone marrow transplantation. Nonlinear Dynamics Syst. Theory 13, 79–92 (2013)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Séroul, R.: Programming for Mathematicians. Springer, Berlin (2000)CrossRefGoogle Scholar
  22. 22.
    Slavin, S., Nagler, A., Naparstek, E., et al.: Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood 91(3), 756–63 (1998). [PMID: 9446633]CrossRefGoogle Scholar
  23. 23.
    Stiehl, T., Ho, A., Marciniak-Czochra, A.: The impact of CD34+ cell dose on engraftment after SCTs: personalized estimates based on mathematical modeling. Bone Marrow Transpl. 49, 30–37 (2014)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Vincent, P.C., Rutzen-Loesevitz, L., Tibken, B., Heinze, B., Hofer, E.P., Fliedner, T.M.: Relapse in chronic myeloid leukemia after bone marrow transplantation: biomathematical modeling as a new approach to understanding pathogenesis. Stem Cells 17, 9–17 (1999)CrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2019

Authors and Affiliations

  1. 1.Department of MathematicsBabeş-Bolyai UniversityCluj-NapocaRomania

Personalised recommendations