Advertisement

Ricerche di Matematica

, Volume 68, Issue 2, pp 535–549 | Cite as

Pattern selection in the 2D FitzHugh–Nagumo model

  • G. GambinoEmail author
  • M. C. Lombardo
  • G. Rubino
  • M. Sammartino
Article
  • 154 Downloads

Abstract

We construct square and target patterns solutions of the FitzHugh–Nagumo reaction–diffusion system on planar bounded domains. We study the existence and stability of stationary square and super-square patterns by performing a close to equilibrium asymptotic weakly nonlinear expansion: the emergence of these patterns is shown to occur when the bifurcation takes place through a multiplicity-two eigenvalue without resonance. The system is also shown to support the formation of axisymmetric target patterns whose amplitude equation is derived close to the bifurcation threshold. We present several numerical simulations validating the theoretical results.

Keywords

FitzHugh–Nagumo model Turing instability Square patterns Amplitude equations 

Mathematics Subject Classification

37L10 70K50 35B36 

Notes

Acknowledgements

The results contained in the present paper have been partially presented in Wascom 2017. The work of GG and GR was partially supported by GNFM-INdAM through a Progetto Giovani grant. The work of MCL and MS was partially supported by GNFM-INdAM.

References

  1. 1.
    Banerjee, M., Ghorai, S., Mukherjee, N.: Approximated spiral and target patterns in Bazykin’s prey-predator model: multiscale perturbation analysis. Int. J. Bifurcation Chaos 27(3), 1750038 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barbera, E., Valenti, G.: Wave features of a hyperbolic reaction–diffusion model for Chemotaxis. Wave Motion 78, 116–131 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bendahmane, M., Ruiz-Baier, R., Tian, C.: Turing pattern dynamics and adaptive discretization for a super-diffusive Lotka–Volterra model. J. Math. Biol. 72(6), 1441–1465 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berenstein, I., Carballido-Landeira, J.: Spatiotemporal chaos involving wave instability. Chaos 27(1), 013116 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biktashev, V.N., Tsyganov, M.A.: Solitary waves in excitable systems with cross-diffusion. Proc. R. Soc. Lond. Ser. A Math. Phys Eng. Sci. 461(2064), 3711–3730 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borgese, G., Vena, S., Pantano, P., Pace, C., Bilotta, E.: Simulation, modeling, and analysis of soliton waves interaction and propagation in CNN transmission lines for innovative data communication and processing. Discrete Dyn. Nat. Soc. 2015, 13 (2015).  https://doi.org/10.1155/2015/139238 CrossRefzbMATHGoogle Scholar
  7. 7.
    Bozzini, B., Gambino, G., Lacitignola, D., Lupo, S., Sammartino, M., Sgura, I.: Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth. Comput. Math. Appl. 70(8), 1948–1969 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brindley, J., Biktashev, V.H., Tsyganov, M.A.: Invasion waves in populations with excitable dynamics. Biol. Invasions 7(5), 807–816 (2005)CrossRefGoogle Scholar
  9. 9.
    Burke, J., Knobloch, E.: Localized states in the generalized Swift-Hohenberg equation. Phys. Rev. E (3), 73(5):056211, 15 (2006)Google Scholar
  10. 10.
    Capone, F., De Luca, R.: On the nonlinear dynamics of an ecoepidemic reaction–diffusion model. Int. J. Nonlinear Mech. 95, 307–314 (2017)CrossRefGoogle Scholar
  11. 11.
    Conforto, F., Desvillettes, L., Soresina, C.: About reaction–diffusion systems involving the Holling-type II and the Beddington–De Angelis functional responses for predator–prey models. ArXiv e-prints (2017)Google Scholar
  12. 12.
    Consolo, G., Curró, C., Valenti, G.: Pattern formation and modulation in a hyperbolic vegetation model for semiarid environments. Appl. Math. Model. 43, 372–392 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    De Wit, A., Lima, D., Dewel, G., Borckmans, P.: Spatiotemporal dynamics near a codimension-two point. Phys. Rev. E 54(1), 261–271 (1996)CrossRefGoogle Scholar
  14. 14.
    FitzHugh, R.: Thresholds and plateaus in the Hodgkin–Huxley nerve equations. J. Gen. Physiol. 43, 867–896 (1960)CrossRefGoogle Scholar
  15. 15.
    Galiano, G.: On a cross-diffusion population model deduced from mutation and splitting of a single species. Comput. Math. Appl. 64(6), 1927–1936 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gambino, G., Lombardo, M.C., Lupo, S., Sammartino, M.: Super-critical and sub-critical bifurcations in a reaction–diffusion Schnakenberg model with linear cross-diffusion. Ric. Mat. 65(2), 449–467 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gambino, G., Lombardo, M.C., Sammartino, M.: Pattern formation driven by cross-diffusion in a 2D domain. Nonlinear Anal. Real World Appl. 14(3), 1755–1779 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gambino, G., Lombardo, M.C., Sammartino, M.: Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion. Acta Appl. Math. 132(1), 283–294 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gambino, G., Lombardo, M.C., Sammartino, M.: Cross-diffusion-induced subharmonic spatial resonances in a predator–prey system. Phys. Rev. E 97(1), 012220 (2018)CrossRefGoogle Scholar
  20. 20.
    Gambino, G., Lombardo, M.C., Sammartino, M., Sciacca, V.: Turing pattern formation in the Brusselator system with nonlinear diffusion. Phys. Rev. E 88(4), 042925 (2013)CrossRefGoogle Scholar
  21. 21.
    Gizzi, A., Loppini, A., Ruiz-Baier, R., Ippolito, A., Camassa, A., Camera, A.L., Emmi, E., Perna, L.G., Garofalo, V., Cherubini, C., Filippi, S.: Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential. Chaos 27(9), 10 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. Universitext. Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis (2011)CrossRefGoogle Scholar
  23. 23.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)CrossRefGoogle Scholar
  24. 24.
    Iqbal, N., Wu, R., Liu, B.: Pattern formation by super-diffusion in FitzHugh–Nagumo model. Appl. Math. Comput. 313, 245–258 (2017)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Kao, H.-C., Knobloch, E.: Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking. Phys. Rev. 85(2), 50 (2012)Google Scholar
  26. 26.
    Li, J., Wang, H., Ouyang, Q.: Square Turing patterns in reaction–diffusion systems with coupled layers. Chaos 24(2), 023115, 6 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Lombardo, M.C., Barresi, R., Bilotta, E., Gargano, F., Pantano, P., Sammartino, M.: Demyelination patterns in a mathematical model of multiple sclerosis. J. Math. Biol. 75(2), 373–417 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Matkowsky, B.J.: Nonlinear dynamic stability: a formal theory. SIAM J. Appl. Math. 18(4), 872–883 (1970)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Murray, J.D.: Mathematical Biology & II, vol. I, 3rd edn. Springer, New York (2007)Google Scholar
  30. 30.
    Nayfeh, A.H.: The Method of Normal Forms, 2nd edn. Wiley, New York (2011)CrossRefGoogle Scholar
  31. 31.
    Pomeau, Y., Zaleski, S., Manneville, P.: Axisymmetric cellular structures revisited. Z. Angew. Math. Phys. 36(3), 367–394 (1985)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rionero, S.: \({L}^2\)-energy decay of convective nonlinear PDEs reaction–diffusion systems via auxiliary ODEs systems. Ric. Mat. 64(2), 251–287 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Truscott, J., Brindley, J.: Equilibria, stability and excitability in a general class of plankton population models. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 347, 703–718 (1994)CrossRefGoogle Scholar
  34. 34.
    Tsyganov, M.A., Brindley, J., Holden, A.V., Biktashev, V.N.: Quasisoliton interaction of pursuit-evasion waves in a predator–prey system. Phys. Rev. Lett. 91(21), 218102 (2003)CrossRefGoogle Scholar
  35. 35.
    Tzou, J.C., Ma, Y.-P., Bayliss, A., Matkowsky, B.J., Volpert, V.A.: Homoclinic snaking near a codimension-two Turing–Hopf bifurcation point in the Brusselator model. Phys. Rev. E 87(2), 022908 (2013)CrossRefGoogle Scholar
  36. 36.
    Yang, L., Dolnik, M., Zhabotinsky, A.M., Epstein, I.R.: Turing patterns beyond hexagons and stripes. Chaos 16(3), 137114 (2006)Google Scholar
  37. 37.
    Yang, L., Zhabotinsky, A.M., Epstein, I.R.: Stable squares and other oscillatory Turing patterns in a reaction–diffusion model. Phys. Rev. Lett. 92(19), 198303-1–1983034-4 (2004)CrossRefGoogle Scholar
  38. 38.
    Zemskov, E.P., Epstein, I.R., Muntean, A.: Oscillatory pulses in Fitzhugh–Nagumo type systems with cross-diffusion. Math. Med. Biol. 28(2), 217–226 (2011)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zemskov, E.P., Horsthemke, W.: Diffusive instabilities in hyperbolic reaction–diffusion equations. Phys. Rev. E 93(3), 032211 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zemskov, E.P., Tsyganov, M.A., Horsthemke, W.: Oscillatory pulses and wave trains in a bistable reaction–diffusion system with cross diffusion. Phys. Rev. E 95(1), 012203 (2017)CrossRefGoogle Scholar
  41. 41.
    Zheng, Q., Shen, J.: Pattern formation in the Fitzhugh–Nagumo model. Comput. Math. Appl. 70(5), 1082–1097 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  • G. Gambino
    • 1
    Email author
  • M. C. Lombardo
    • 1
  • G. Rubino
    • 1
  • M. Sammartino
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of PalermoPalermoItaly
  2. 2.DIIDUniversity of PalermoPalermoItaly

Personalised recommendations