Advertisement

Ricerche di Matematica

, Volume 68, Issue 2, pp 469–483 | Cite as

Double diffusive convection in porous media under the action of a magnetic field

  • Florinda Capone
  • Roberta De LucaEmail author
Article

Abstract

The onset of thermal convection in an electrically conducting fluid saturating a porous medium, uniformly heated from below, salted by one chemical and embedded in an external transverse magnetic field is analyzed. The critical Rayleigh thermal numbers at which steady and Hopf convection can occur, are determined. Sufficient conditions guaranteeing the effective onset of convection via steady or oscillatory state are provided.

Keywords

Porous convection Magnetic field Double-diffusive convection Routh–Hurwitz conditions Stability 

Mathematics Subject Classification

76S05 76E06 76W05 

Notes

Acknowledgements

This paper has been performed under the auspices of G.N.F.M. of INdAM. One of the authors (R. De Luca) acknowledges Progetto Giovani GNFM 2017 “Analisi dei sistemi biologici complessi”. The Authors should like to thank an anonymous referee for suggestions which have led to improvements in the manuscript.

References

  1. 1.
    Bhadauria, B.S., Sherani, A.: Onset of Darcy-convection in a magnetic-fluid-saturated porous medium subject to temperature modulation of the boundaries. Transp. Porous Media 73, 349–368 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Capone, F., De Luca, R.: Porous MHD convection: effect of Vadasz inertia term. Transp. Porous Media 118(3), 519–536 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Capone, F., Rionero, S.: Porous MHD convection: stabilizing effect of magnetic field and bifurcation analysis. Ric. Mat. 65, 163–186 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Capone, F., Rionero, S.: Brinkmann viscosity action in porous MHD convection. Int. J. Non Linear Mech. 85, 109–117 (2016). (2013) 192–200CrossRefGoogle Scholar
  5. 5.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)zbMATHGoogle Scholar
  6. 6.
    Joseph, D.D.: Stability of fluid motions I, II. In: Springer Tracts in Natural Philosophy, Vol. 27–28. Springer, Berlin, Heidelberg (1976)Google Scholar
  7. 7.
    Merkin, D.R.: Introduction to the Theory of Stability, Texts in Applied Mathematics, vol. 24, p. xx+319. Springer, New York (1997)Google Scholar
  8. 8.
    Mulone, G., Rionero, S.: A non-linear stability analysis of the magnetic Bénard problem through the Lyapunov direct method. Arch. Ration. Mech. Anal. 103, 347–368 (1988)CrossRefGoogle Scholar
  9. 9.
    Mulone, G., Rionero, S.: Necessary and sufficient conditions for nonlinear stability in the magnetic Bénard problem. Arch. Ration. Mech. Anal. 166, 197–218 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nield, D.A., Bejan, A.: Convection in Porous Media, IV edn. Springer, Berlin (2012)zbMATHGoogle Scholar
  11. 11.
    Rionero, S.: Heat and mass transfer by convection in multicomponent Navier–Stokes mixture: absence of subcritical instabilities and global nonlinear stability via the Auxiliary System Method. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei 25(4), 369 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rionero, S.: Dynamic of thermo-MHD flows via a new approach. Rend. Lincei Mat. Appl. 28, 21–47 (2017)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Srivastava, A.K., Bhadauria, B.S., Gupta, V.K.: Magneto-convection in an anisotropic porous layer with Soret effect. Int. J. Non Linear Mech. 47, 426–438 (2012)CrossRefGoogle Scholar
  14. 14.
    Straughan, B.: The Energy Method, Stability, and Nonlinear Convection, Appl. Math. Sci., vol. 91, 2nd edn. Springer, Berlin (2004)CrossRefGoogle Scholar
  15. 15.
    Straughan, B.: Stability and Wave Motion in Porous Media, Appl. Math. Sci., vol. 165. Springer, Berlin (2008)Google Scholar
  16. 16.
    Straughan, B.: Convection with Local thermal Non-equilibrium and Microfluidic Effects. Advances in Mechanics and Mathematics. Springer, Berlin (2015)zbMATHGoogle Scholar
  17. 17.
    Thompson, W.B.: Thermal convection in a magnetic field. Philos. Mag. Sc. Ser. 7(42), 1417–1432 (1951)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Vimala, S., Damodaran, S., Sivakumar, R., Sekhar, T.V.S.: The role of magnetic Reynolds number in MHD forced convection heat transfer. Appl. Math. Model. 40, 6737–6753 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Applications “Renato Caccioppoli”University of Naples Federico IINaplesItaly

Personalised recommendations