Ricerche di Matematica

, Volume 68, Issue 2, pp 421–433 | Cite as

Modelling of the convective plasma dynamics in the Sun: anelastic and Boussinesq MHD systems

  • Andrea MentrelliEmail author


This work deals with the mathematical modelling and asymptotic analysis of the plasma convective dynamics in the center of the Sun. The heat produced via thermonuclear fusion in the interior of the Sun is transported towards the surface first via radiation, and finally via convection. Convection is thought to be responsible for the generation of magnetic fields and is hence a very important phenomenon to be understood in detail in order to get more insight in the internal structure of the Sun. Anelastic and Boussinesq models are formally derived here from the underlying compressible MHD models and we shall prepare the ground for our future numerical works, based on asymptotic-preserving techniques.


Plasma modelling Convection in the Sun Singularly perturbed problems Compressible MHD-system Anelastic equation Boussinesq equation Asymptotic-preserving scheme 

Mathematics Subject Classification

35C20 76X05 



The author is grateful to Claudia Negulescu (Université Paul Sabatier, Toulouse) for having introduced him to the research field of AP schemes, and for sharing knowledge and ideas that led to this paper. This work was partially supported by the Italian National Group for Mathematical Physics (GNFM/INdAM). The author—well aware of his good fortune—would like to express his gratitude and deepest appreciation to Tommaso Ruggeri for being such a supportive, generous and invaluable one-of-a-kind mentor.


  1. 1.
    Alazard, T.: A minicourse on the low Mach number limit. Discrete Contin. Dyn. Syst. Ser. S 1, 365–404 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Degond, P., Deluzet, F., Lozinski, A., Narski, J., Negulescu, C.: Duality based asymptotic-preserving method for highly anisotropic diffusion equations. Commun. Math. Sci. 10(1), 1–31 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Degond, P., Deluzet, F., Negulescu, C.: An asymptotic preserving scheme for strongly anisotropic elliptic problem. SIAM Multiscale Model. Simul. 8(2), 645–666 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Degond, P., Lozinski, A., Narski, J., Negulescu, C.: An asymptotic-preserving method for highly anisotropic elliptic equations based on a micro–macro decomposition. J. Comput. Phys. 231(7), 2724–2740 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Degond, P., Tang, M.: All speed scheme for the low mach number limit of the Isentropic Euler equation. Commun. Comput. Phys. 10, 1–31 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feireisl, E., Novotný, A.: Singular Limits in Thermodynamics of Viscous Fluids. Birkhäuser Verlag, Basel (2009)CrossRefGoogle Scholar
  7. 7.
    Feireisl, E., Málek, J., Novotný, A., Straškraba, Y.: Anelastic approximation as a singular limit of the compressible Navier–Stokes system. Commun. Part. Differ. Equ. 33, 157–176 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gilman, P.A., Glatzmaier, G.A.: Compressible convection in a rotating spherical shell. Part I. Anelastic equations. Astrophys. J. Suppl. Ser. 45, 335–349 (1981)CrossRefGoogle Scholar
  9. 9.
    Glatzmaier, G.A.: Numerical simulations of stellar convective dynamos. Part I. The model and method. J. Comput. Phys. 55, 461–484 (1984)CrossRefGoogle Scholar
  10. 10.
    Glatzmaier, G.A.: Numerical simulations of stellar convective dynamos. Part II. Field propagation in the convective zone. Astrophys. J. 291, 300–307 (1985)CrossRefGoogle Scholar
  11. 11.
    Haack, J., Jin, S., Liu, J.G.: An all-speed asymptotic-preserving method for the isentropic Euler and Navier–Stokes equation. Commun. Comput. Phys. 12, 955–980 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jin, S.: Efficient asymptotic-preserving (AP) Schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Rivista di Matematica della Universita di Parma 3, 177–216 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S., Wicht, J.: Anelastic convection-driven dynamo benchmarks. Icarus 216, 120–135 (2011)CrossRefGoogle Scholar
  15. 15.
    Jouve, L.: Modélisation du magnétisme solaire: de son origine interne à ses manifestations en surface. Ph.D. thesis, Université Paris-Diderot (2008)Google Scholar
  16. 16.
    Lantz, S.R., Fan, Y.: Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. Ser. 121, 247–264 (1999)CrossRefGoogle Scholar
  17. 17.
    Mentrelli, A., Negulescu, C.: Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations. J. Comput. Phys. 231, 8229–8245 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Mentrelli, A., Negulescu, C.: Asymptotic-preserving scheme for a strongly anisotropic vorticity equation arising in fusion plasma modelling, submitted (2018)Google Scholar
  19. 19.
    Miesch, M.S.: Large-scale dynamics of the convection zone and tachocline. Living Rev. Sol. Phys. 2, 1–139 (2005)Google Scholar
  20. 20.
    Ogilvie, G.I.: Astrophysical fluid dynamics. J. Plasma Phys. 82, 205820301 (2016)CrossRefGoogle Scholar
  21. 21.
    Ogura, Y., Phillips, N.A.: Scale analysis of deep and shallow convection in the athmosphere. J. Atmos. Sci. 19, 173–179 (1962)CrossRefGoogle Scholar

Copyright information

© Università degli Studi di Napoli "Federico II" 2018

Authors and Affiliations

  1. 1.Department of Mathematics and AM2University of BolognaBolognaItaly

Personalised recommendations