Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Effect of conductor materials in lithium composite anode on plating and stripping of lithium

  • 18 Accesses

Abstract

Due to its high capacity and low density, lithium metal is considered as one of the most promising anodes for next-generation lithium batteries. However, the problems of dendrite and volume change are the main obstacles to limit its further development. Therefore, it is of great significance to realize the stable plating and stripping of lithium metal. The stability of lithium metal can be improved by compositing lithium with conductor materials, but the effect of conductor materials on lithium composite anode needs to be further studied. Herein, ionic or electronic conductor powders are introduced into the interior of lithium metal by hot-melt mixed coating method; Li/Cu, Li/Zn, and Li/Li3N composite anodes are prepared; and their electrochemical performances in solid and liquid batteries are studied. The results show that plating and stripping of lithium in composite anodes will take place preferentially around electronic or ionic conductor, rather than around lithium itself. For liquid batteries, the introduction of electronic conductor in lithium composite anode will make the electric field distribution more uniform and thus make the lithium deposition more stable, while the introduction of ionic conductor in composite anodes can improve the electrochemical stability of composite anodes in solid-state batteries. The capacity of the Li/Cu-LFP battery was 42.5 mAh g−1 after 500 cycles at 10 °C, corresponding to the 77% retention of its initial capacity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Cheng XB, Zhang R, Zhao CZ, Zhang Q (2017) Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 117(15):10403–10473

  2. 2.

    Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

  3. 3.

    Wang H, Liu Y, Li Y, Cui Y (2019) Lithium metal anode materials design: interphase and host. Electrochem Energy Rev 2(4):509–517

  4. 4.

    Bruce Dunn HK, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

  5. 5.

    Cha E, Patel MD, Park J, Hwang J, Prasad V, Cho K, Choi W (2018) 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat Nanotechnol 13(4):337–344

  6. 6.

    Cheng XB, Hou TZ, Zhang R, Peng HJ, Zhao CZ, Huang JQ, Zhang Q (2016) Dendrite-free Lithium deposition induced by uniformly distributed Lithium ions for efficient lithium metal batteries. Adv Mater 28(15):2888–2895

  7. 7.

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J-G (2014) Lithium metal anodes for rechargeable batteries. Energy Environ Sci 7(2):513–537

  8. 8.

    Yang C, Fu K, Zhang Y, Hitz E, Hu L (2017) Protected Lithium-metal anodes in batteries: from liquid to solid. Adv Mater 29(36)

  9. 9.

    Wood KN, Noked M, Dasgupta NP (2017) Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett 2(3):664–672

  10. 10.

    Newman CMAJ (2003) Dendrite growth in Lithium-polymer systems a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150:A1377–A1384

  11. 11.

    Zhang K, Lee G-H, Park M, Li W, Kang Y-M (2016) Recent developments of the lithium metal anode for rechargeable non-aqueous batteries. Adv Energy Mater 6(20):1600811. https://doi.org/10.1002/aenm.201600811

  12. 12.

    Yaron S, Cohen YC, Aurbach D (2000) Micromorphological studies of Lithium electrodes in alkyl carbonate solutions using in situ atomic force microscopy. J Phys Chem B 104:12282–12291

  13. 13.

    Ilott AJ, Mohammadi M, Chang HJ, Grey CP, Jerschow A (2016) Real-time 3D imaging of microstructure growth in battery cells using indirect MRI. Proc Natl Acad Sci U S A 113(39):10779–10784

  14. 14.

    Lu Y, Tu Z, Archer LA (2014) Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat Mater 13(10):961–969

  15. 15.

    Fei Ding WX, Chen X, Zhang J, Engelhard MH, Zhang Y, Johnson BR, Crum JV, Blake TA, Liu X, Zhang J-G (2013) Effects of carbonate solvents and Lithium salts on morphology and Coulombic efficiency of lithium electrode. J Electrochem Soc 160(10):A1894–A1901

  16. 16.

    Zhang Y, Qian J, Xu W, Russell SM, Chen X, Nasybulin E, Bhattacharya P, Engelhard MH, Mei D, Cao R, Ding F, Cresce AV, Xu K, Zhang JG (2014) Dendrite-free lithium deposition with self-aligned nanorod structure. Nano Lett 14(12):6889–6896

  17. 17.

    Jiao S, Ren X, Cao R, Engelhard MH, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, Liu N, Adams BD, Ma C, Liu J, Zhang J-G, Xu W (2018) Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat Energy 3(9):739–746

  18. 18.

    Lu Y, Gu S, Hong X, Rui K, Huang X, Jin J, Chen C, Yang J, Wen Z (2018) Pre-modified Li3PS4 based interphase for lithium anode towards high-performance Li-S battery. Energy Storage Mater 11:16–23

  19. 19.

    Wei Luo LZ, Kun F, Yang Z, Wan J, Manno M, Yao Y, Zhu H, Bao Y, Hu L (2015) A thermally conductive separator for stable Li metal anodes. Nano Lett 15(9):6149–6154

  20. 20.

    Li NW, Yin YX, Yang CP, Guo YG (2016) An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv Mater 28(9):1853–1858

  21. 21.

    Kim H, Jeong G, Kim YU, Kim JH, Park CM, Sohn HJ (2013) Metallic anodes for next generation secondary batteries. Chem Soc Rev 42(23):9011–9034

  22. 22.

    Fu KK, Gong Y, Dai J, Gong A, Han X, Yao Y, Wang C, Wang Y, Chen Y, Yan C, Li Y, Wachsman ED, Hu L (2016) Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci U S A 113(26):7094–7099

  23. 23.

    Xu S, McOwen DW, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y, Yang C, Hamann TR, Wachsman ED, Hu L (2018) Three-dimensional, solid-state mixed electron-ion conductive framework for lithium metal anode. Nano Lett 18(6):3926–3933

  24. 24.

    Zhang Q, Wan H, Liu G, Ding Z, Mwizerwa JP, Yao X (2019) Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 57:771–782

  25. 25.

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X, Chen L, Li H (2019) In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy 63:103895

  26. 26.

    Wang SH, Yin YX, Zuo TT, Dong W, Li JY, Shi JL, Zhang CH, Li NW, Li CJ, Guo YG (2017) Stable Li metal anodes via regulating Lithium plating/stripping in vertically aligned microchannels. Adv Mater 29(40)

  27. 27.

    Zhang R, Chen X, Shen X, Zhang X-Q, Chen X-R, Cheng X-B, Yan C, Zhao C-Z, Zhang Q (2018) Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2(4):764–777

  28. 28.

    Ke X, Cheng Y, Liu J, Liu L, Wang N, Liu J, Zhi C, Shi Z, Guo Z (2018) Hierarchically bicontinuous porous copper as advanced 3D skeleton for stable lithium storage. ACS Appl Mater Interfaces 10(16):13552–13561

  29. 29.

    Lu LL, Ge J, Yang JN, Chen SM, Yao HB, Zhou F, Yu SH (2016) Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett 16(7):4431–4437

  30. 30.

    Yun Q, He YB, Lv W, Zhao Y, Li B, Kang F, Yang QH (2016) Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv Mater 28(32):6932–6939

  31. 31.

    Zhang Y, Luo W, Wang C, Li Y, Chen C, Song J, Dai J, Hitz EM, Xu S, Yang C, Wang Y, Hu L (2017) High-capacity, low-tortuosity, and channel-guided lithium metal anode. Proc Natl Acad Sci U S A 114(14):3584–3589

  32. 32.

    Yang CP, Yin YX, Zhang SF, Li NW, Guo YG (2015) Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 6:8058

  33. 33.

    Chi S-S, Liu Y, Song W-L, Fan L-Z, Zhang Q (2017) Prestoring lithium into stable 3D nickel foam host as dendrite-free Lithium metal anode. Adv Funct Mater 27(24):1700348

  34. 34.

    Zheng Lianga DL, Zhaoa J, Lua Z, Liua Y, Liua C, Lua Y, Wangb H, Yana K, Taoa X, Cui Y (2016) Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci 133(11):2862–2867

  35. 35.

    Xue P, Liu S, Shi X, Sun C, Lai C, Zhou Y, Sui D, Chen Y, Liang J (2018) A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv Mater 30(44):e1804165

  36. 36.

    Fu K, Gong Y, Hitz GT, McOwen DW, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G, Dai J, Liu B, Xie H, Yao Y, Wachsman ED, Hu L (2017) Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ Sci 10(7):1568–1575

  37. 37.

    Zhang C, Liu S, Li G, Zhang C, Liu X, Luo J (2018) Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes. Adv Mater:e1801328

  38. 38.

    Sun C, Lin A, Li W, Jin J, Sun Y, Yang J, Wen Z (2019) In situ conversion of Cu3P nanowires to mixed ion/electron-conducting skeleton for homogeneous lithium deposition. Adv Energy Mater:1902989

  39. 39.

    Changzhi Sun TW, Wang J, Li W, Jin J, Yang J, Wen Z (2018) Favorable lithium deposition behaviors on flexible carbon microtube skeleton enable a high-performance lithium metal anode. J Mater Chem A 6:19159–19166

  40. 40.

    Guo Q, Han Y, Wang H, Xiong S, Li Y, Liu S, Xie K (2017) New class of LAGP-based solid polymer composite electrolyte for efficient and safe solid-state lithium batteries. ACS Appl Mater Interfaces 9(48):41837–41844

Download references

Funding

This work was supported by the scientific research project of National University of Defense Technology (Grant No. ZK17-03-61).

Author information

Correspondence to Yuhao Zhu or Yu Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supporting Information is available from the ACS Online Library or from the author.

ESM 1

(PDF 578 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Han, Y., Wang, H. et al. Effect of conductor materials in lithium composite anode on plating and stripping of lithium. Ionics (2020). https://doi.org/10.1007/s11581-020-03485-w

Download citation

Keywords

  • Lithium
  • Composite anode
  • Ionic conductor
  • Electronic conductor
  • Hot-melt mixed coating method