Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries

  • 7 Accesses

Abstract

To improve the long cyclic stability and rate capability of Si-based anode, we demonstrate a core-shell structural Si@NC composite decorates with N-doped carbon network using a low-cost, a simple process of electrospinning and low-temperature pyrolysis. Si@PVP/Urea fabric composite spun on the copper foil was directly carbonized and then was cut into wafers used as the electrode plates without extra conductive agent and binder. The enhanced rate capability and cyclic stability of special structural Si@NC is mainly ascribable to N-doped carbon matrix providing numerous active sites, which attract Li to those points in an efficient way, and the core-shell structures supply high mechanical strength for Si@NC composite. Importantly, almost 3-fold improvement in the capacity retention rate of the Si@NC has been observed at high current densities of 1.6 and 3.2 A g−1. Meanwhile, DFT calculations confirm that Li will be easily adsorbed by N-active sites in N-doped carbon model to strengthen chemical absorption ability, which could have more chance to grab the quickly moving Li in a brief period. It is significant for theoretical guidance of subsequent studies. The findings should make an important contribution providing a great possibility for the mass production and application to the field of lithium-ion battery.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Zhu C, Usiskin RE, Yu Y, Maier J (2017) Science 358

  2. 2.

    Chen Y, Liu L, Xiong J, Yang T, Qin Y, Yan C (2015) Adv Funct Mater 25:6701–6709

  3. 3.

    Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM (2014) Chem Mater 26:2203–2209

  4. 4.

    Shen C, Ge M, Zhang A, Fang X, Liu Y, Rong J, Zhou C (2016) Nano Energy 19:68–77

  5. 5.

    Jia R, Yue J, Xia Q, Xu J, Zhu X, Sun S, Zhai T, Xia H (2018) Energy Storage Mater 13:303–311

  6. 6.

    Yuan Y, Xiao W, Wang Z, Fray DJ, Jin X (2018) Angew Chem 57:15743–15748

  7. 7.

    Cho JH, Picraux ST (2013) Nano Lett 13:5740–5747

  8. 8.

    Liu SWJ, Qie Y, Yu J, Sun Q (2018) Carbon 140:680–687

  9. 9.

    Liu J, Zhang Q, Zhang T, Li J-T, Huang L, Sun S-G (2015) Adv Funct Mater 25:3599–3605

  10. 10.

    David L, Bhandavat R, Barrera U, Singh G (2016) Nat Commun 7:10998

  11. 11.

    Chen H, Wang S, Liu X, Hou X, Chen F, Pan H, Qin H, Lam K-h, Xia Y, Zhou G (2018) Electrochim Acta 288:134–143

  12. 12.

    Tao Xu DW, Qiu P, Zhang J, Wang Q, Xia B, Xie X (2018) Nanoscale

  13. 13.

    Wang W, Gu L, Qian H, Zhao M, Ding X, Peng X, Sha J, Wang Y (2016) J Power Sources 307:410–415

  14. 14.

    Hedong Chen KS, Hou X, Zhang G, Wang S, Chen F, Fu L, Qin H, Xia Y, Zhou G (2019) Appl Surf Sci 470:496–506

  15. 15.

    Huang S, Cheong LZ, Wang D, Shen C (2017) Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 9:23672–23678

  16. 16.

    Chen H, Wang Z, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S (2017) Electrochim Acta 249:113–121

  17. 17.

    Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y (2018) Carbon 130:433–440

  18. 18.

    Chen Y, Hu Y, Shao J, Shen Z, Chen R, Zhang X, He X, Song Y, Xing X (2015) J Power Sources 298:130–137

  19. 19.

    Yoo JK, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24:5452–5456

  20. 20.

    Zhang C, Yu R, Zhou T, Chen Z, Liu H, Guo Z (2014) Carbon 72:169–175

  21. 21.

    Xue L, Fu K, Li Y, Xu G, Lu Y, Zhang S, Toprakci O, Zhang X (2013) Nano Energy 2:361–367

  22. 22.

    Chen H, Hou X, Qu L, Qin H, Ru Q, Huang Y, Hu S, Lam K-h (2016) J Mater Sci Mater Electron 28:250–258

  23. 23.

    Kresse G, Furthmiiller J (1996) Comput Mater Sci

  24. 24.

    Kresse G, Furthmuller J (1996) Phys Rev B 54

  25. 25.

    Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

  26. 26.

    Kresse G, Joubert D (1991) Phys Rev B

  27. 27.

    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54

  28. 28.

    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

  29. 29.

    Taylor J, Guo H, Wang J (2001) Phys Rev B 63

  30. 30.

    Xu X, Zhao R, Ai W, Chen B, Du H, Wu L, Zhang H, Huang W, Yu T (2018) Adv Mater 30:e1800658

  31. 31.

    Li C, Wu M, Liu R (2019) Appl Catal B Environ 244:150–158

  32. 32.

    Zhu X, Jin T, Tian C, Lu C, Liu X, Zeng M, Zhuang X, Yang S, He L, Liu H, Dai S (2017) Adv Mater 29

  33. 33.

    Attia EN, Hassan FM, Li M, Batmaz R, Elkamel A, Chen Z (2017) J Mater Chem A 5:24159–24167

  34. 34.

    Xu Z-L, Zhang B, Kim J-K (2014) Nano Energy 6:27–35

  35. 35.

    Sun C, Deng Y, Wan L, Qin X, Chen G (2014) ACS Appl Mater Interfaces 6:11277–11285

  36. 36.

    Zhou X, Wan LJ, Guo YG (2013) Small 9:2684–2688

  37. 37.

    Han Y, Zou J, Li Z, Wang W, Jie Y, Ma J, Tang B, Zhang Q, Cao X, Xu S, Wang ZL (2018) Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries. ACS Nano 12:4835–4843

  38. 38.

    Chen J, Mao Z, Zhang L, Wang D, Xu R, Bie L, Fahlman BD (2017) Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 11:12650–12657

  39. 39.

    Kim JS, Pfleging W, Kohler R, Seifert HJ, Kim TY, Byun D, Jung H-G, Choi W, Lee JK (2015) J Power Sources 279:13–20

  40. 40.

    Luo W, Wang Y, Chou S, Xu Y, Li W, Kong B, Dou SX, Liu HK, Yang J (2016) Nano Energy 27:255–264

  41. 41.

    Wang Y, Zhao X, Tian Y, Wang Y, Jan AK, Chen Y (2017) Facile electrospinning synthesis of carbonized polyvinylpyrrolidone (PVP)/g-C<sub>3</sub> N<sub>4</sub> hybrid films for photoelectrochemical applications. Chemistry 23:419–426

  42. 42.

    Yang X, Wen Z, Xu X, Lin B, Huang S (2007) J Power Sources 164:880–884

  43. 43.

    Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y (2011) Nano Lett 11:2949–2954

  44. 44.

    Esmanski A, Ozin GA (2009) Adv Funct Mater 19:1999–2010

  45. 45.

    Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Nat Commun 4:1943

  46. 46.

    Shang H, Zuo Z, Yu L, Wang F, He F, Li Y (2018) Adv Mater 30:e1801459

  47. 47.

    Zhou X, Cao A-M, Wan L-J, Guo Y-G (2012) Nano Res 5:845–853

  48. 48.

    Liu XH, Liu Y, Kushima A, Zhang S, Zhu T, Li J, Huang JY (2012) Adv Energy Mater 2:722–741

  49. 49.

    Kim N, Park H, Yoon N, Lee JK (2018) ACS Nano

  50. 50.

    Jiazhi Hu YW, Li D, Cheng Y-T (2018) J Power Sources 397:223–230

  51. 51.

    Sun Z, Wang G, Cai T, Ying H, Han W-Q (2016) Electrochim Acta 191:299–306

  52. 52.

    Rahman MA, Song G, Bhatt AI, Wong YC, Wen C (2016) Adv Funct Mater 26:647–678

  53. 53.

    Li C, Liu C, Wang W, Bell J, Mutlu Z, Ahmed K, Ye R, Ozkan M, Ozkan CS (2016) Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning. Chem Commun 52:11398–11401

Download references

Funding

This work was supported financially by the union project of National Natural Science Foundation of China and Guangdong Province (U1601214), the Scientific and Technological Plan of Guangdong Province (2018B050502010, 018A050506078, 2017B090901027), the Natural Science Foundation of Guangdong Province (2017A030310166), the Project of Blue Fire Plan (Nos CXZJHZ201708 and CXZJHZ201709), and Science and Technology Project Foundation of Zhongshan City of Guangdong Province of China (No. 2018B1127).

Author information

Correspondence to Xianhua Hou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Kaixiang Shen and Hedong Chen both contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 472 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, K., Chen, H., Hou, X. et al. Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries. Ionics (2020). https://doi.org/10.1007/s11581-020-03484-x

Download citation

Keywords

  • Anode
  • Electrospinning
  • Core-shell
  • Binder-free
  • Rate capability