Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hierarchical microspheres assembled from Li4Ti5O12-TiO2 nanosheets with advanced lithium ion storage

  • 7 Accesses


Spinal Li4Ti5O12 is considered as an excellent anode material due to its good stability and safety; however, the low electronic conductivity and poor lithium-ion transfer ability restrict the rate performance. In this work, high rate hierarchical microspheres composed of Li4Ti5O12-TiO2 nanosheets (LTO-AT) were prepared by a facile hydrothermal process. Mesopores on the sheets construct transport channels and shorten the transport path length of lithium-ions, lattice disorders and phase boundaries on the nanosheets accelerate lithium-ion migration and provide lithium storage sites. When adopted as anode material, the obtained LTO-AT microsphere shows excellent electrochemical performance, delivering a discharge capacity of 132.1, 112.9, and 97.5 mAh g−1 at 50, 80, and 100 C, respectively. What’s more, the LTO-AT electrode exhibits outstanding cycling performance with a capacity retention of 86.6% after 2000 cycles at 5 C. The excellent charge/discharge ability at high current density and outstanding cycling performance demonstrate that the hierarchical LTO-AT microsphere can be an admirable anode material for high-rate lithium-ion batteries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Du Q, Su L, Hou L, Sun G, Feng M, Yin X, Ma Z, Shao G, Gao W (2018) Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor. J Alloys Compd 740:1051–1059

  2. 2.

    Song A, Cao L, Yang W, Yang W, Wang L, Ma Z, Shao G (2019) In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction. Carbon 142:40–50

  3. 3.

    Yang W, Yang W, Sun B, Di S, Yan K, Wang G, Shao G (2018) Mixed lithium oxynitride/oxysulfide as an interphase protective layer to stabilize lithium anodes for high-performance lithium–sulfur batteries. ACS Appl Mater Interfaces 10(46):39695–39704

  4. 4.

    Liu H, Luo S-h, S-x Y, Wang Q, Hu D-b, Wang Y-l, Feng J, Yi T-F (2019) High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Compos Part B 164:576–582

  5. 5.

    Yang LY, Li HZ, Liu J, Tang SS, Lu YK, Te Li S, Min J, Yan N, Lei M (2015) Li4Ti5O12 nanosheets as high-rate and long-life anode materials for sodium-ion batteries. J Mater Chem A 3(48):24446–24452

  6. 6.

    Liu H, Luo S-h, Hu D-b, Liu X, Wang Q, Wang Z-y, Wang Y-l, L-j C, Y-g L, Yi T-F (2019) Design and synthesis of carbon-coated α-Fe2O3@ Fe3O4 heterostructured as anode materials for lithium ion batteries. Appl Surf Sci 495:143590

  7. 7.

    Liu H, Luo S, Dx Z, Hu D, Yi TF, Wang Z, Zhang Y, Yg L, Wang Q, Am H (2019) A simple and low-cost method to synthesize Cr-doped α-Fe2O3 electrode materials for lithium-ion batteries. ChemElectroChem 6(3):856–864

  8. 8.

    Wang J, Zhao H, Yang Q, Wang C, Lv P, Xia Q (2013) Li4Ti5O12–TiO2 composite anode material for lithium-ion batteries. J Power Sources 222:196–201

  9. 9.

    Zhu G-N, Wang Y-G, Xia Y-Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667

  10. 10.

    Wang C, Wang S, Tang L, He Y-B, Gan L, Li J, Du H, Li B, Lin Z, Kang F (2016) A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy 21:133–144

  11. 11.

    Sha Y, Zhao B, Ran R, Cai R, Shao Z (2013) Synthesis of well-crystallized Li4Ti5O12 nanoplates for lithium-ion batteries with outstanding rate capability and cycling stability. J Mater Chem A 1(42):13233–13243

  12. 12.

    Yin P-S, Peng H-T, Xiao Y, Lin T-W, Lin J-Y (2016) Facile synthesis of an Al-doped carbon-coated Li4Ti5O12 anode for high-rate lithium-ion batteries. RSC Adv 6(81):77151–77160

  13. 13.

    Li CC, Li QH, Chen LB, Wang TH (2012) A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries. ACS Appl Mater Interfaces 4(3):1233–1238

  14. 14.

    Yuan T, Tan Z, Ma C, Yang J, Ma ZF, Zheng S (2017) Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv Energy Mater 7(12):1601625

  15. 15.

    Chen S, Xin Y, Zhou Y, Ma Y, Zhou H, Qi L (2014) Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life. Energy Environ Sci 7(6):1924–1930

  16. 16.

    Kim J-G, Shi D, Park M-S, Jeong G, Heo Y-U, Seo M, Kim Y-J, Kim JH, Dou SX (2013) Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res 6(5):365–372

  17. 17.

    Shen L, Uchaker E, Zhang X, Cao G (2012) Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries. Adv Mater 24(48):6502–6506

  18. 18.

    Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14(5):2597–2603

  19. 19.

    Odziomek M, Chaput F, Rutkowska A, Świerczek K, Olszewska D, Sitarz M, Lerouge F, Parola S (2017) Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries. Nat Commun 8:15636

  20. 20.

    Lin J-Y, Hsu C-C, Ho H-P, Wu S-h (2013) Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochim Acta 87:126–132

  21. 21.

    Zhang Q, Zhang C, Li B, Jiang D, Kang S, Li X, Wang Y (2013) Preparation and characterization of W-doped Li4Ti5O12 anode material for enhancing the high rate performance. Electrochim Acta 107:139–146

  22. 22.

    Zhao Z, Xu Y, Ji M, Zhang H (2013) Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 109:645–650

  23. 23.

    Yi T-F, Liu H, Zhu Y-R, Jiang L-J, Xie Y, Zhu R-S (2012) Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution. J Power Sources 215:258–265

  24. 24.

    Yi T-F, Xie Y, Wu Q, Liu H, Jiang L, Ye M, Zhu R (2012) High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries. J Power Sources 214:220–226

  25. 25.

    Yang C-C, Hu H-C, Lin S, Chien W-C (2014) Electrochemical performance of V-doped spinel Li4Ti5O12/C composite anode in Li-half and Li4Ti5O12/LiFePO4-full cell. J Power Sources 258:424–433

  26. 26.

    Wang L, Zhang Y, Guo H, Li J, Stach EA, Tong X, Takeuchi ES, Takeuchi KJ, Liu P, Marschilok AC (2018) Structural and electrochemical characteristics of Ca-doped “flower-like” Li4Ti5O12 motifs as high-rate anode materials for lithium-ion batteries. Chem Mater 30(3):671–684

  27. 27.

    Sun L, Xiong W, Mi H, Li Y, Zhuo H, Zhang Q, He C, Liu J (2017) In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries. Electrochim Acta 230:508–513

  28. 28.

    Ge H, Cui L, Zhang B, Ma T-Y, Song X-M (2016) Ag quantum dots promoted Li4Ti5O12/TiO2 nanosheets with ultrahigh reversible capacity and super rate performance for power lithium-ion batteries. J Mater Chem A 4(43):16886–16895

  29. 29.

    Xin X, Zhou X, Wu J, Yao X, Liu Z (2012) Scalable synthesis of TiO2/graphene nanostructured composite with high-rate performance for lithium ion batteries. ACS Nano 6(12):11035–11043

  30. 30.

    Cheng X-L, Hu M, Huang R, Jiang J-S (2014) HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery. ACS Appl Mater Interfaces 6(21):19176–19183

  31. 31.

    Yu XY, Wu HB, Yu L, Ma FX, Lou XW (2015) Rutile TiO2 submicroboxes with superior lithium storage properties. Angew Chem Int Ed 54(13):4001–4004

  32. 32.

    Ren Y, Liu Z, Pourpoint F, Armstrong AR, Grey CP, Bruce PG (2012) Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew Chem 124(9):2206–2209

  33. 33.

    Wang Y-Q, Gu L, Guo Y-G, Li H, He X-Q, Tsukimoto S, Ikuhara Y, Wan L-J (2012) Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J Am Chem Soc 134(18):7874–7879

  34. 34.

    Wu L, Leng X, Liu Y, Wei S, Li C, Wang G, Lian J, Jiang Q, Nie A, Zhang T-Y (2017) A strategy for synthesis of nanosheets consisting of alternating spinel Li4Ti5O12 and rutile TiO2 lamellas for high-rate anodes of lithium-ion batteries. ACS Appl Mater Interfaces 9(5):4649–4657

  35. 35.

    Wang S, Yang Y, Quan W, Hong Y, Zhang Z, Tang Z, Li J (2017) Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: capacity and conductivity enhancement by phase boundaries. Nano Energy 32:294–301

  36. 36.

    Yao Z, Xia X, Xie D, Wang Y, Zhou Ca, Liu S, Deng S, Wang X, Tu J (2018) Enhancing ultrafast lithium ion storage of Li4Ti5O12 by tailored TiC/C core/shell skeleton plus nitrogen doping. Advanced Functional Materials:1802756

  37. 37.

    Zhu K, Gao H, Hu G (2018) A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as free-standing anode for high rate lithium ion batteries. J Power Sources 375:59–67

  38. 38.

    Yin H, Lin T, Yang C, Wang Z, Zhu G, Xu T, Xie X, Huang F, Jiang M (2013) Gray TiO2 nanowires synthesized by aluminum-mediated reduction and their excellent photocatalytic activity for water cleaning. Chem Eur J 19(40):13313–13316

  39. 39.

    Zhu W-D, Wang C-W, Chen J-B, Li D-S, Zhou F, Zhang H-L (2012) Enhanced field emission from hydrogenated TiO2 nanotube arrays. Nanotechnology 23(45):455204

  40. 40.

    Mori M, Shibata M, Kyuno E, Ito S (1956) Reaction of hydrogen peroxide with titanium (IV) at different pH values. Bull Chem Soc Jpn 29(8):904–907

  41. 41.

    Xu H, Tian Q, Huang J, Bao D, Zhang Z, Yang L (2017) Elaborate strategy for preparing Li4Ti5O12-based anode materials with significantly improved lithium storage: TiO2 nanodots in-situ decoration and hierarchical structure construction. J Phys Chem Solids 110:49–57

  42. 42.

    Tian Q, Chen J, Zhang Z, Yang L (2017) Fabrication of TiO2in-situ decorated and hierarchical Li4Ti5O12 for improved lithium storage. Electrochim Acta 231:670–676

  43. 43.

    Xu G, Yang L, Wei X, Ding J, Zhong J, Chu P (2015) Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J Power Sources 295:305–313

  44. 44.

    Li N, Mei T, Zhu Y, Wang L, Liang J, Zhang X, Qian Y, Tang K (2012) Hydrothermal synthesis of layered Li1.81H0.19Ti2O5·xH2O nanosheets and their transformation to single-crystalline Li4Ti5O12 nanosheets as the anode materials for Li-ion batteries. CrystEngComm 14(20):6435–6440

  45. 45.

    Wu Q, Xu J, Yang X, Lu F, He S, Yang J, Fan HJ, Wu M (2015) Ultrathin anatase TiO2 nanosheets embedded with TiO2-B nanodomains for lithium-ion storage: capacity enhancement by phase boundaries. Adv Energy Mater 5(7):1401756

  46. 46.

    Xia T, Zhang W, Li W, Oyler NA, Liu G, Chen X (2013) Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2(5):826–835

  47. 47.

    Su L, Gao L, Du Q, Hou L, Ma Z, Qin X, Shao G (2018) Construction of NiCo2O4@ MnO2 nanosheet arrays for high-performance supercapacitor: highly cross-linked porous heterostructure and worthy electrochemical double-layer capacitance contribution. J Alloys Compd 749:900–908

  48. 48.

    Ca Z, Xia X, Wang Y, Yao Z, Wu J, Wang X, Tu J (2018) Pine-needle-like Cu–Co skeleton composited with Li4Ti5O12 forming core–branch arrays for high-rate lithium ion storage. Small 14(16):1704339

  49. 49.

    Wu F, Li X, Wang Z, Guo H (2013) Petal-like Li4Ti5O12–TiO2 nanosheets as high-performance anode materials for Li-ion batteries. Nanoscale 5(15):6936–6943

  50. 50.

    Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Nakanishi K, Abe T (2015) Hierarchically porous Li4Ti5O12 anode materials for Li-and Na-ion batteries: effects of nanoarchitectural design and temperature dependence of the rate capability. Adv Energy Mater 5(1):1400730

  51. 51.

    Xiao L, Chen G, Sun J, Chen D, Xu H, Zheng Y (2013) Facile synthesis of Li4Ti5O12 nanosheets stacked by ultrathin nanoflakes for high performance lithium ion batteries. J Mater Chem A 1(46):14618–14626

  52. 52.

    Shi Y, Gao J, Abruna HD, Liu H, Li H, Wang J, Wu Y (2014) Rapid synthesis of Li4Ti5O12/graphene composite with superior rate capability by a microwave-assisted hydrothermal method. Nano Energy 8:297–304

  53. 53.

    Liao J-Y, Chabot V, Gu M, Wang C, Xiao X, Chen Z (2014) Dual phase Li4Ti5O12–TiO2 nanowire arrays as integrated anodes for high-rate lithium-ion batteries. Nano Energy 9:383–391

  54. 54.

    Yu L, Wu HB, Lou XW (2013) Mesoporous Li4Ti5O12 hollow spheres with enhanced lithium storage capability. Adv Mater 25(16):2296–2300

  55. 55.

    Xiong Q, Chi H, Zhang J, Tu J (2016) Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. J Alloys Compd 688:729–735

  56. 56.

    Yu M, Cheng X, Zeng Y, Wang Z, Tong Y, Lu X, Yang S (2016) Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew Chem 128(23):6874–6878

  57. 57.

    Zhang Y, Zhang Y, Huang L, Zhou Z, Wang J, Liu H, Wu H (2016) Hierarchical carambola-like Li4Ti5O12-TiO2 composites as advanced anode materials for lithium-ion batteries. Electrochim Acta 195:124–133

  58. 58.

    Ge H, Hao T, Osgood H, Zhang B, Chen L, Cui L, Song X-M, Ogoke O, Wu G (2016) Advanced mesoporous spinel Li4Ti5O12/rGO composites with increased surface lithium storage capability for high-power lithium-ion batteries. ACS Appl Mater Interfaces 8(14):9162–9169

  59. 59.

    Yang W, Yang W, Zhang F, Wang G, Shao G (2018) Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: an advanced carbon nanostructure for superior lithium and sodium storage. Small 14(39):1802221

  60. 60.

    Ge H, Cui L, Sun Z-J, Wang D, Nie S, Zhu S, Matthews B, Wu G, Song X-M, Ma T (2018) Unique Li4Ti5O12/TiO2 multilayer arrays with advanced surface lithium storage capability. Journal of Materials Chemistry A

  61. 61.

    Luo S-h, Hu D-b, Liu H, J-z L, Yi T-F (2019) Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. J Hazard Mater 368:714–721

  62. 62.

    Luo S, Zhang P, Yuan T, Ruan J, Peng C, Pang Y, Sun H, Yang J, Zheng S (2018) Molecular self-assembly of a nanorod N-Li4Ti5O12/TiO2/C anode for superior lithium ion storage. J Mater Chem A 6(32):15755–15761

  63. 63.

    Ho C, Raistrick I, Huggins R (1980) Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127(2):343–350

  64. 64.

    Wang S, Quan W, Zhu Z, Yang Y, Liu Q, Ren Y, Zhang X, Xu R, Hong Y, Zhang Z (2017) Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nat Commun 8(1):627

Download references


We are grateful for the financial support from the National Natural Science Foundation of China (51674221 and 51704261) and the Natural Science Foundation of Hebei Province (B2018203330 and B2018203360).

Author information

Correspondence to Xiujuan Qin or Guangjie Shao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Di, S., Li, J., Zhao, Y. et al. Hierarchical microspheres assembled from Li4Ti5O12-TiO2 nanosheets with advanced lithium ion storage. Ionics (2020). https://doi.org/10.1007/s11581-020-03452-5

Download citation


  • Lithium titanate
  • High rate
  • Boundaries and disorders
  • Dual phase
  • Anodes