pp 1–10 | Cite as

Highly efficient hydrogen evolution reaction of Co3O4 supports on N-doped carbon nanotubes in an alkaline solution

  • Jibo JiangEmail author
  • Yukai Chen
  • Haishan Cong
  • Jiabin Tang
  • Yaoxin Sun
  • Xiaomin Hu
  • Lulu Wang
  • Sheng HanEmail author
  • Hualin Lin
Original Paper


Platinum group compounds are currently the best performance hydrogen evolution catalysts, but their high price and low abundance limit their large-scale applications. Therefore, noble-metal-free catalysts have become a focus in the research of hydrogen evolution reactions (HER). In this work, we developed a noble-metal-free HER catalyst consisting of Co3O4 supported on N-doped carbon nanotubes (Co3O4-NCTs). The Co3O4-NCT catalyst synthesized by stirring, heating, and high-temperature calcination was studied, showing a very low Tafel plot (32.3 mV dec−1) in an alkaline solution and good stability for hydrogen evolution reactions. In addition, the material synthesis method is simple, the experimental raw materials are cheap and easy to obtain, and it is expected to be suitable for large-scale industrial production.


Electrocatalytic Hydrogen evolution reaction Co3O4 Alkaline solution 



This work was supported by the Science and Technology Commission of Shanghai Municipality Project (Project Number 18090503800), Shanghai Natural Science Foundation of Shanghai (Project Number 17ZR1441700 and 14ZR1440500), and Shanghai Association for Science and Technology Achievements Transformation Alliance Program (Project Number LM201851).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript is approved by all authors for publication.


  1. 1.
    Qu Y, Pan H, Kwok CT, Wang Z (2015) A first-principles study on the hydrogen evolution reaction of VS2 nanoribbons. Phys Chem Chem Phys 17:24820–24825PubMedCrossRefGoogle Scholar
  2. 2.
    Som NN, Mankad V, Jha PK (2018) Hydrogen evolution reaction: the role of arsenene nanosheet and dopant. Int J Hydrog Energy 43:21634–21641CrossRefGoogle Scholar
  3. 3.
    Cortright RD, Davda R, Dumesic JA (2011) Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. In: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, pp 289–292Google Scholar
  4. 4.
    Faber MS, Jin S (2014) Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ Sci 7:3519–3542CrossRefGoogle Scholar
  5. 5.
    Morales-Guio CG, Stern L-A, Hu X (2014) Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev 43:6555–6569PubMedCrossRefGoogle Scholar
  6. 6.
    Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Nørskov JK (2011) Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. In: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific, pp 280–284Google Scholar
  7. 7.
    Conway B, Jerkiewicz G (2000) Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’for cathodic H2 evolution kinetics. Electrochim Acta 45:4075–4083CrossRefGoogle Scholar
  8. 8.
    Tiwari JN, Sultan S, Myung CW, Yoon T, Li N, Ha M, Harzandi AM, Park HJ, Kim DY, Chandrasekaran SS (2018) Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat Energy 3:773CrossRefGoogle Scholar
  9. 9.
    Jia L, Sun X, Jiang Y, Yu S, Wang C (2015) A novel MoSe2-reduced graphene oxide/polyimide composite film for applications in electrocatalysis and photoelectrocatalysis hydrogen evolution. Adv Funct Mater 25:1814–1820CrossRefGoogle Scholar
  10. 10.
    Huot JY, Trudeau M, Schulz R (1991) Low hydrogen overpotential nanocrystalline Ni-Mo cathodes for alkaline water electrolysis. J Electrochem Soc 138:1316–1321CrossRefGoogle Scholar
  11. 11.
    Jakšić J, Vojnović M, Krstajić N (2000) Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochim Acta 45:4151–4158CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Li P, Zhou D, Chang Z, Kuang Y, Sun X (2017) Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13:1701648CrossRefGoogle Scholar
  13. 13.
    Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317:100–102PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Long X, Li G, Wang Z, Zhu H, Zhang T, Xiao S, Guo W, Yang S (2015) Metallic iron-nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J Am Chem Soc 137:11900–11903PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Xu S, Li D, Wu P (2015) One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25:1127–1136CrossRefGoogle Scholar
  16. 16.
    Callejas JF, McEnaney JM, Read CG, Crompton JC, Biacchi AJ, Popczun EJ, Gordon TR, Lewis NS, Schaak RE (2014) Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles. ACS Nano 8:11101–11107PubMedCrossRefGoogle Scholar
  17. 17.
    Wang F, Yang X, Dong B, Yu X, Xue H, Feng L (2018) A FeP powder electrocatalyst for the hydrogen evolution reaction. Electrochem Commun 92:33–38CrossRefGoogle Scholar
  18. 18.
    Yan L, Zhang B, Zhu J, Zhao S, Li Y, Zhang B, Jiang J, Ji X, Zhang H, Shen P (2019) Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. J Mater Chem AGoogle Scholar
  19. 19.
    Weidman MC, Esposito DV, Hsu Y-C, Chen JG (2012) Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J Power Sources 202:11–17CrossRefGoogle Scholar
  20. 20.
    Wang S, Liao L, Shi Z, Xiao J, Gao Q, Zhang Y, Liu B, Tang Y (2016) Mo2C/reduced-graphene-oxide nanocomposite: an efficient electrocatalyst for the hydrogen evolution reaction. ChemElectroChem 3:2110–2115CrossRefGoogle Scholar
  21. 21.
    Li J-S, Wang Y, Liu C-H, Li S-L, Wang Y-G, Dong L-Z, Dai Z-H, Li Y-F, Lan Y-Q (2016) Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat Commun 7:11204PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Xie J, Li S, Zhang X, Zhang J, Wang R, Zhang H, Pan B, Xie Y (2014) Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci 5:4615–4620CrossRefGoogle Scholar
  23. 23.
    Choi D, Kumta PN (2007) Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J Am Ceram Soc 90:3113–3120CrossRefGoogle Scholar
  24. 24.
    Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG (2013) Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc 135:19186–19192PubMedCrossRefGoogle Scholar
  25. 25.
    Xu B, Sun Y, Chen Z, Zhao S, Yang X, Zhang H, Li C (2018) Facile and large-scale preparation of Co/Ni-MoO2 composite as high-performance electrocatalyst for hydrogen evolution reaction. Int J Hydrog Energy 43:20721–20726CrossRefGoogle Scholar
  26. 26.
    Pham K-C, Chang Y-H, McPhail DS, Mattevi C, Wee AT, Chua DH (2016) Amorphous molybdenum sulfide on graphene–carbon nanotube hybrids as highly active hydrogen evolution reaction catalysts. ACS Appl Mater Interfaces 8:5961–5971PubMedCrossRefGoogle Scholar
  27. 27.
    Tang C, Gan L, Zhang R, Lu W, Jiang X, Asiri AM, Sun X, Wang J, Chen L (2016) Ternary Fe x Co1–x P nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: experimental and theoretical insight. Nano Lett 16:6617–6621PubMedCrossRefGoogle Scholar
  28. 28.
    Wang F, Sun Y, He Y, Liu L, Xu J, Zhao X, Yin G, Zhang L, Li S, Mao Q (2017) Highly efficient and durable MoNiNC catalyst for hydrogen evolution reaction. Nano Energy 37:1–6CrossRefGoogle Scholar
  29. 29.
    Murthy AP, Madhavan J, Murugan K (2018) Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media. J Power Sources 398:9–26CrossRefGoogle Scholar
  30. 30.
    Wei Z, Hu X, Ning S, Kang X, Chen S (2019) Supported heterostructured MoC/Mo2C nanoribbons and nanoflowers as highly active electrocatalysts for hydrogen evolution reaction. ACS Sustain Chem Eng 7:8458–8465CrossRefGoogle Scholar
  31. 31.
    Chen J, Liu J, Xie J-Q, Ye H, Fu X-Z, Sun R, Wong C-P (2019) Co-Fe-P nanotubes electrocatalysts derived from metal-organic frameworks for efficient hydrogen evolution reaction under wide PH range. Nano Energy 56:225–233CrossRefGoogle Scholar
  32. 32.
    Wang F, Liu Y-m, Zhang C-y (2019) Facile synthesis of porous carbon/Ni12P5 composites for electrocatalytic hydrogen evolution. New J Chem 43:4160–4167CrossRefGoogle Scholar
  33. 33.
    Lu XF, Yu L, Lou XWD (2019) Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-PH efficient and durable hydrogen evolving electrocatalysts. Sci Adv 5:eaav6009PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ma L, Hu Y, Zhu G, Chen R, Chen T, Lu H, Wang Y, Liang J, Liu H, Yan C (2016) In situ thermal synthesis of inlaid ultrathin MoS2/graphene nanosheets as electrocatalysts for the hydrogen evolution reaction. Chem Mater 28:5733–5742CrossRefGoogle Scholar
  35. 35.
    Su Y, Zhu Y, Jiang H, Shen J, Yang X, Zou W, Chen J, Li C (2014) Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6:15080–15089PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Filiz BC, Figen AK, Pişkin S (2018) The remarkable role of metal promoters on the catalytic activity of Co-Cu based nanoparticles for boosting hydrogen evolution: ammonia borane hydrolysis. Appl Catal B Environ 238:365–380CrossRefGoogle Scholar
  37. 37.
    Jiang J, Zhu L, Chen H, Sun Y, Qian W, Lin H, Han S (2019) Highly active and stable electrocatalysts of FeS2-reduced graphene oxide for hydrogen evolution. J Mater Sci 54:1422–1433CrossRefGoogle Scholar
  38. 38.
    Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:14433–14437CrossRefGoogle Scholar
  39. 39.
    Jiang J, Zhu L, Sun Y, Chen Y, Chen H, Han S, Lin H (2019) Fe2O3 nanocatalysts on N-doped carbon nanomaterial for highly efficient electrochemical hydrogen evolution in alkaline. J Power Sources 426:74–83CrossRefGoogle Scholar
  40. 40.
    Fu N, Wei H-M, Lin H-L, Li L, Ji C-H, Yu N-B, Chen H-J, Han S, Xiao G-Y (2017) Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application. ACS Appl Mater Interfaces 9:9955–9963PubMedCrossRefGoogle Scholar
  41. 41.
    Wei H, Chen H, Fu N, Chen J, Lan G, Qian W, Liu Y, Lin H, Han S (2017) Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim Acta 231:403–411CrossRefGoogle Scholar
  42. 42.
    Alam HB, Das R, Shajahan M, Ullah AA, Kibria AF (2018) Surface characteristics and electrolysis efficiency of a palladium-nickel electrode. Int J Hydrogen Energy 43:1998–2008CrossRefGoogle Scholar
  43. 43.
    Wei B, Wu J, Mei G, Qi Z, Hu W, Wang Z (2019) NiCo2O4 nanowire arrays rich in oxygen deficiencies for hydrogen evolution reaction. Int J Hydrog Energy 44:6612–6617CrossRefGoogle Scholar
  44. 44.
    Sung M-C, Lee G-H, Kim D-W (2019) CeO2/Co(OH)2 hybrid electrocatalysts for efficient hydrogen and oxygen evolution reaction. J Alloys CompdGoogle Scholar
  45. 45.
    Li Y, Zhang X, Hu A, Li M (2018) Morphological variation of electrodeposited nanostructured Ni-Co alloy electrodes and their property for hydrogen evolution reaction. Int J Hydrog Energy 43:22012–22020CrossRefGoogle Scholar
  46. 46.
    Wang H, Wang X, Yang D, Zheng B, Chen Y (2018) Co0.85Se hollow nanospheres anchored on N-doped graphene nanosheets as highly efficient, nonprecious electrocatalyst for hydrogen evolution reaction in both acid and alkaline media. J Power Sources 400:232–241CrossRefGoogle Scholar
  47. 47.
    Sheng M, Weng W, Wang Y, Wu Q, Hou S (2018) Co-W/CeO2 composite coatings for highly active electrocatalysis of hydrogen evolution reaction. J Alloys Compd 743:682–690CrossRefGoogle Scholar
  48. 48.
    Liu H, Zeng S, He P, Dong F, He M, Zhang Y, Wang S, Li C, Liu M, Jia L (2019) Samarium oxide modified Ni-Co nanosheets based three-dimensional honeycomb film on nickel foam: a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 299:405–414CrossRefGoogle Scholar
  49. 49.
    Wang D-Y, Gong M, Chou H-L, Pan C-J, Chen H-A, Wu Y, Lin M-C, Guan M, Yang J, Chen C-W (2015) Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J Am Chem Soc 137:1587–1592PubMedCrossRefGoogle Scholar
  50. 50.
    Xu J, Li F, Wang D, Nawaz MH, An Q, Han D, Niu L (2019) Co3O4 nanostructures on flexible carbon cloth for crystal plane effect of nonenzymatic electrocatalysis for glucose. Biosens Bioelectron 123:25–29PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Jibo Jiang
    • 1
    Email author
  • Yukai Chen
    • 1
  • Haishan Cong
    • 1
  • Jiabin Tang
    • 1
  • Yaoxin Sun
    • 1
  • Xiaomin Hu
    • 1
  • Lulu Wang
    • 2
  • Sheng Han
    • 1
    Email author
  • Hualin Lin
    • 1
  1. 1.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringShanghai University of Engineering ScienceShanghaiPeople’s Republic of China

Personalised recommendations